Exploring the Usefulness of Formal Concept Analysis for Robust Detection of Spatio-temporal Spike Patterns in Massively Parallel Spike Trains
详细信息    查看全文
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:9717
  • 期:1
  • 页码:3-16
  • 全文大小:1,024 KB
  • 参考文献:1.Abeles, M.: Corticonics: Neural Circuits of the Cerebral Cortex, 1st edn. Cambridge University Press, Cambridge (1991)CrossRef
    2.Andrews, S.: In close, a fast algorithm for computing formal concepts. In: Seventeenth International Conference on Conceptual Structures (2009)
    3.Babin, M.A., Kuznetsov, S.O.: Approximating concept stability. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS, vol. 7278, pp. 7–15. Springer, Heidelberg (2012)CrossRef
    4.Berger, D., Borgelt, C., Louis, S., Morrison, A., Grün, S.: Efficient identification of assembly neurons withinmassively parallel spike trains. Comput. Intell. Neurosci. 2010, 1–18 (2010). doi:10.​1155/​2010/​439648 . Aricle ID 439648
    5.Bienenstock, E.: A model of neocortex. Netw. Comput. Neural Syst. 6(2), 179–224 (1995)CrossRef MATH
    6.Borgelt, C.: Frequent item set mining. In: Wiley Interdisciplinary Reviews (WIREs): Data Mining and Knowledge Discovery, vol. 2, pp. 437–456. Wiley, Chichester (2012). doi:10.​1002/​widm.​1074
    7.Diesmann, M., Gewaltig, M.-O., Aertsen, A.: Characterization of synfire activity by propagating ‘pulse packets’. In: Bower, J.M. (ed.) Computational Neuroscience: Trends in Research, pp. 59–64. Academic Press, San Diego (1996)
    8.Diesmann, M., Gewaltig, M.-O., Aertsen, A.: Stable propagation of synchronous spiking in cortical neural networks. Nature 402(6761), 529–533 (1999)CrossRef
    9.Endres, D., Adam, R., Giese, M.A., Noppeney, U.: Understanding the semantic structure of human fMRI brain recordings with formal concept analysis. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS, vol. 7278, pp. 96–111. Springer, Heidelberg (2012)CrossRef
    10.Endres, D.M., Földiák, P., Priss, U.: An application of formal concept analysis to semantic neural decoding. Ann. Math. Artif. Intell. 57(3–4), 233–248 (2009)CrossRef MATH MathSciNet
    11.Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)CrossRef MATH
    12.Gerstein, G.L., Williams, E.R., Diesmann, M., Grün, S., Trengove, C.: Detecting synfire chains in parallel spike data. J. Neurosci. Methods 206(1), 54–64 (2012)CrossRef
    13.Grün, S.: Data-driven significance estimation of precise spike correlation. J. Neurophysiol. 101(3), 1126–1140 (2009)CrossRef
    14.Grün, S., Abeles, M., Diesmann, M.: Impact of higher-order correlations on coincidence distributions of massively parallel data. In: Marinaro, M., Scarpetta, S., Yamaguchi, Y. (eds.) Dynamic Brain - from Neural Spikes to Behaviors. LNCS, vol. 5286, pp. 96–114. Springer, Heidelberg (2008)CrossRef
    15.Izhikevich, E.M.: Polychronization: computation with spikes. Neural Comput. 18, 245–282 (2006)CrossRef MATH MathSciNet
    16.Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for Python (2001). Accessed 25 Jan 2016
    17.Krajca, P., Vychodil, V.: Distributed algorithm for computing formal concepts using map-reduce framework. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 333–344. Springer, Heidelberg (2009)CrossRef
    18.Kuznetsov, S.O.: On stability of a formal concept. Ann. Math. Artif. Intell. 49(1–4), 101–115 (2007)CrossRef MATH MathSciNet
    19.Kuznetsov, S.O., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theoret. Artif. Intell. 14, 189–216 (2002)CrossRef MATH
    20.Lindig, C.: Fast concept analysis. In: Working with Conceptual Structures - Contributions to ICCS 2000, pp. 152–161. Shaker Verlag, August 2000
    21.Louis, S., Gerstein, G.L., Grün, S., Diesmann, M.: Surrogate spike train generation through dithering in operational time. Front. Comput. Neurosci. 4, 127 (2010)CrossRef
    22.Nadasdy, Z., Hirase, H., Czurko, A., Csicsvari, J., Buzsaki, G.: Replay and time compression of recurring spike sequences in the hippocampus. J. Neurosci. 19(21), 9497–9507 (1999)
    23.Olson, D.L., Delen, D.: Advanced Data Mining Techniques. Springer, Heidelberg (2008)MATH
    24.Prut, Y., Vaadia, E., Bergman, H., Haalman, I., Hamutal, S., Abeles, M.: Spatiotemporal structure of cortical activity: properties and behavioral relevance. J. Neurophysiol. 79(6), 2857–2874 (1998)
    25.Riehle, A., Wirtssohn, S., Grün, S., Brochier, T.: Mapping the spatio-temporal structure of motor cortical lfp and spiking activities during reach-to-grasp movements. Front. Neural Circ. 7, 48 (2013). doi:10.​3389/​fncir.​2013.​00048
    26.Roth, C., Obiedkov, S.A., Kourie, D.G.: On succinct representation of knowledge community taxonomies with formal concept analysis. Int. J. Found. Comput. Sci. 19(2), 383–404 (2008)CrossRef MATH MathSciNet
    27.Schrader, S., Grün, S., Diesmann, M., Gerstein, G.: Detecting synfire chain activity using massively parallel spike train recording. J. Neurophysiol. 100, 2165–2176 (2008)CrossRef
    28.Schwarz, D.A., Lebedev, M.A., Hanson, T.L., Dimitrov, D.F., Lehew, G., Meloy, J., Rajangam, S., Subramanian, V., Ifft, P.J., Li, Z., Ramakrishnan, A., Tate, A., Zhuang, K.Z., Nicolelis, M.A.L.: Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys. Nat. Methods 11, 670–676 (2014)CrossRef
    29.Torre, E., Picado-Muiño, D., Denker, M., Borgelt, C., Grün, S.: Statistical evaluation of synchronous spike patterns extracted by frequent item set mining. Front. Comput. Neurosci. 7, 132 (2013)CrossRef
  • 作者单位:Alper Yegenoglu (16)
    Pietro Quaglio (16)
    Emiliano Torre (16)
    Sonja Grün (16) (17)
    Dominik Endres (18)

    16. Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
    17. Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany
    18. Theoretical Neuroscience Group, Department of Psychology, Philipps-University, Marburg, Germany
  • 丛书名:Graph-Based Representation and Reasoning
  • ISBN:978-3-319-40985-6
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Computer Communication Networks
    Software Engineering
    Data Encryption
    Database Management
    Computation by Abstract Devices
    Algorithm Analysis and Problem Complexity
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1611-3349
  • 卷排序:9717
文摘
The understanding of the mechanisms of information processing in the brain would yield practical impact on innovations such as brain-computer interfaces. Spatio-temporal patterns of spikes (or action potentials) produced by groups of neurons have been hypothesized to play an important role in cortical communication [1]. Due to modern advances in recording techniques at millisecond resolution, an empirical test of the spatio-temporal pattern hypothesis is now becoming possible in principle. However, existing methods for such a test are limited to a small number of parallel spike recordings. We propose a new method that is based on Formal Concept Analysis (FCA, [11]) to carry out this intensive search. We show that evaluating conceptual stability [18] is an effective way of separating background noise from interesting patterns, as assessed by precision and recall rates on ground truth data. Because of the scaling behavior of stability evaluation, our approach is only feasible on medium-sized data sets consisting of a few dozens of neurons recorded simultaneously for some seconds. We would therefore like to encourage investigations on how to improve this scaling, to facilitate research in this important area of computational neuroscience.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700