Evidence for 5S rDNA Horizontal Transfer in the toadfish Halobatrachus didactylus (Schneider, 1801) based on the analysis of three multigene families
详细信息    查看全文
  • 作者:Manuel A Merlo (1)
    Ismael Cross (1)
    José L Palazón (2) (3)
    María úbeda-Manzanaro (1) (2)
    Carmen Sarasquete (2)
    Laureana Rebordinos (1)
  • 刊名:BMC Evolutionary Biology
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:12
  • 期:1
  • 全文大小:744KB
  • 参考文献:1. Greenfield DW: Allenbatrachus, a new genus of Indo-Pacific toadfish (Batrachoididae). / Pac Sci 1997, 51:306-13.
    2. Palazón JL, Nirchio M, Sarasquete C: Conventional karyotype and nucleolar organiser regions of the toadfish Halobatrachus didactylus (Schneider, 1801) (Pisces: Batrachoididae). / Sci 2003, 67:445-49.
    3. Roux C: Batrachoididae. In / Fishes of North-eastern Atlantic and Mediterranean. 3rd edition. Edited by: Whitehead PJP, Bauchot ML, Hureau JC, Nielsen JL, Tortonese E. Paris: UNESCO; 1986:1360-361.
    4. Sarasquete C, Gutiérrez M, Establier R: Efecto del mercurio inorgánico (HgCl2) sobre la sangre y ri?ón del pez sapo marino, Halobatrachus didactylus (Schneider, 1801). / Inv Pesq 1982, 46:323-30.
    5. Desantis S, Cirillo F, Deflorio M, Megalofonou P, Palazón JL, Sarasquete C, de Metrio G: Histochemical study of glycoconjugates in the toadfish, Halobatrachus didactylus oesophagus epithelium. / Histol Histopathol 2007, 22:23-5.
    6. Palazón JL, Arias AM, Sarasquete C: Aspects of the reproductive biology of the toadfish, Halobatrachus didactylus (Schneider, 1801) (Pisces: Batrachoididae). / Sci 2001, 65:131-38.
    7. Sarasquete C: Estudios de las series eritrocítica, leucocítica y trombocítica de la sangre periférica del pez sapo marino, Halobatrachus didactylus. / Inv Pesq 1983, 47:403-12.
    8. úbeda-Manzanaro M, Merlo MA, Palazón JL, Cross I, Sarasquete C, Rebordinos L: Chromosomal mapping of the major and minor ribosomal genes, (GATA)n and U2 snRNA gene by double-colour FISH in species of the Batrachoididae family. / Genetica 2010, 138:787-94. CrossRef
    9. úbeda-Manzanaro M, Merlo MA, Palazón JL, Sarasquete C, Rebordinos L: Sequence characterization and phylogenetic analysis of the 5S ribosomal DNA in species of the family Batrachoididae. / Genome 2010, 53:723-30. CrossRef
    10. Merlo A, Cross I, Palazón JL, Sarasquete C, Rebordinos L: Chromosomal mapping of the major and minor ribosomal genes, (GATA)n and (TTAGGG)n by one-color and double-color FISH reveals three chromosomal markers in the toadfish Halobatrachus didactylus (Teleostei: Batrachoididae). / Genetica 2007, 131:195-00. CrossRef
    11. Nei M, Rooney AP: Concerted and Birth-and-Death evolution of multigene families. / Annu Rev Genet 2005, 39:121-52. CrossRef
    12. Manchado M, Zuasti E, Cross I, Merlo A, Infante C, Rebordinos L: Molecular characterization and chromosomal mapping of the 5S rRNA gene in Solea senegalensis: a new linkage to the U1, U2, and U5 small nuclear RNA genes. / Genome 2006, 49:79-6. CrossRef
    13. Pinhal D, Araki CS, Gadig OBF, Martins C: Molecular organization of 5S rDNA in sharks of the genus Rhizoprionodon: insights into the evolutionary dynamics of 5S rDNA in vertebrate genomes. / Genet Res, Camb 2009, 91:61-2. CrossRef
    14. Vierna J, González-Tizón AM, Martínez-Lage A: Long-term evolution of 5S ribosomal DNA seems to be driven by Birth-and-Death processes and selection in Ensis razor shells (Mollusca: Bivalvia). / Biochem Genet 2009, 47:635-44. CrossRef
    15. McNamara-Schroeder KJ, Hennessey RF, Harding GA, Jensen RC, Stumph WE: The Drosophila U1 and U6 gene proximal sequence elements act as important determinants of the RNA polymerase specificity of small nuclear RNA gene promoters in vitro and in vivo. / J Biol Chem 2001, 276:31786-1792. CrossRef
    16. Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J: 5S ribosomal RNA database. / Nucleic Acids Res 2002, 30:176-78. CrossRef
    17. Tebb G, Mattaj IW: The Xenopus laevis U2 gene Distal Sequence Element (enhancer) is composed of four subdomains that can act independently and are partly functionally redundant. / Mol Cel Biol 1989, 9:1682-690.
    18. Sola L, Rossi AR, Annesi F, Gornung E: Cytogenetic studies in Sparus auratus (Pisces, Perciformes): molecular organization of 5S rDNA and chromosomal mapping of 5S and 45S ribosomal genes and of telomeric repeats. / Hereditas 2003, 139:232-36. CrossRef
    19. Zhu HP, Lu MX, Gao FY, Huang ZH, Yang LP, Gui JF: Chromosomal localization of rDNA genes and genomic organization of 5S rDNA in Oreochromis mossambicus, O. urolepis hornorum and their hybrid. / J Genet 2010, 89:163-71. CrossRef
    20. Martins C, Wasko AP: Organization and evolution of 5S ribosomal DNA in the fish genome. In / Focus on genome research. Edited by: Williams CR. New York: Nova Science Publishers; 2004:335-63.
    21. Ocalewicz K, Hliwa P, Krol J, Rábová M, Stabinski R, Ráb P: Karyotype and chromosomal characteristics of Ag-NOR sites and 5S rDNA in European smelt, Osmerus eperlanus. / Genetica 2007, 131:29-5. CrossRef
    22. Freire R, Arias A, Insua A, Méndez J, Eirín-López JM: Evolutionary dynamics of the 5S rDNA gene family in the mussel Mytilus: mixed effects of birth-and-death and concerted evolution. / J Mol Evol 2010, 70:413-26. CrossRef
    23. Fujiwara M, Inafuku J, Takeda A, Watanabe A, Fujiwara A, Kohno S, Kubota S: Molecular organization of 5S rDNA in bitterlings (Cyprinidae). / Genetica 2009, 135:355-65. CrossRef
    24. Finn RN, Kristoffersen BA: Vertebrate vitellogenin gene duplication in relation to the "3R Hypothesis": Correlation to the Pelagic egg and the Oceanic radiation of Teleosts. / PLoS One 2007, 2:e169. CrossRef
    25. Frost LS, Leplae R, Summers AO, Toussaint A: Mobile genetic elements: the agents of open source evolution. / Nat Rev Microbiol 2005, 3:722-32. CrossRef
    26. Treangen TJ, Rocha EP: Horizontal Transfer, not duplication, drives the expansion of protein families in prokaryotes. / PLoS Genet 2011, 7:e1001284. CrossRef
    27. Keeling PJ, Palmer JD: Horizontal gene transfer in eukaryotic evolution. / Nat Rev Genet 2008, 9:605-18. CrossRef
    28. Schaack S, Gilbert C, Feschotte C: Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. / Trends Ecol Evol 2010, 25:537-46. CrossRef
    29. Kidwell MG: Horizontal transfer of P-elements and other short inverted repeat transposons. / Genetica 1992, 86:275-86. CrossRef
    30. Deprá M, Panzera Y, Ludwig A, Valente VLS, Loreto ELS: hosimary: a new hAT transposon group involved in horizontal transfer. / Mol Genet Genomics 2010, 283:451-59. CrossRef
    31. Klasson L, Kambris Z, Cook PE, Walker T, Sinkins SP: Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti. / BMC Genomics 2009, 10:33-1. CrossRef
    32. Pace JK, Gilbert C, Clark MS, Feschotte C: Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods. / Proc Natl Acad Sci USA 2008, 105:17023-7028. CrossRef
    33. Roulin A, Piegu B, Wing RA, Panaud O: Evidence of multiple horizontal transfers of the long terminal repeat retrotransposon RIRE1 within the genus Oryza. / Plant J 2008, 53:950-59. CrossRef
    34. de Boer JG, Yazawa R, Davidson WS, Koop BF: Bursts and horizontal evolution of DNA transposons in the speciation of pseudotetraploid salmonids. / BMC Genomics 2007, 8:422-31. CrossRef
    35. Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A: Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. / Nat Genet 2005, 37:997-002. CrossRef
    36. Kapitonov VV, Jurka J: A novel class of SINE elements derived from 5S rRNA. / Mol Biol Evol 2003, 20:694-02. CrossRef
    37. Rooney AP, Ward TJ: Evolution of a large ribosomal RNA multigene family in filamentous fungi: Birth and death of a concerted evolution paradigm. / PNAS 2005, 102:5084-089. CrossRef
    38. Piskurek O, Okada N: Poxviruses as possible vectors for horizontal transfer of retrotransposons from reptiles to mammals. / Proc Natl Acad Sci USA 2007, 104:12046-2051. CrossRef
    39. Raychoudhury R, Baldo L, Oliveira DCSG, Werren JH: Modes of acquisition of Wolbachia: Horizontal transfer, hybrid introgression, and codivergence in the Nasonia species complex. / Evolution 2009, 63:165-83. CrossRef
    40. Gilbert C, Schaack S, Pace JK, Brindley PJ, Feschotte C: A role for host-parasite interactions in the horizontal transfer of transposons across phyla. / Nature 2010, 464:1347-350. CrossRef
    41. Jehle JA, Nickel A, Vlak JM, Backhaus H: Horizontal escape of the novel Tc1-like lepidopteran transposon TCp3.2 into Cydia pomonella granulovirus. / J Mol Evol 1998, 46:215-24. CrossRef
    42. Anderson MT, Seifert HS: Opportunity and means: horizontal gene transfer from the human host to a bacterial pathogen. / mBio 2011, 2:e00005-e00011. CrossRef
    43. Spadafora C: Mini-Review: developments in reproductive biology and medicine. / Hum Reprod 2008, 23:735-40. CrossRef
    44. Bacci ML, Zannoni A, de Cecco M, Fantinati P, Bernardini C, Galeati G, Spinaci M, Giovannoni R, Lavitrano M, Seren E, / et al.: Sperm-mediated gene transfer-treated spermatozoa maintain good quality parameters and in vitro fertilization ability in swine. / Theriogenology 2009, 72:1163-170. CrossRef
    45. Lavitrano M, Forni M, Bacci ML, di Stefano C, Varzi V, Wang H, Seren E: Sperm mediated gene transfer in pig: selection of donor boars and optimization of DNA uptake. / Mol Rep Dev 2003, 64:284-91. CrossRef
    46. Khoo H-W: Sperm-mediated gene transfer studies on zebrafish in Singapore. / Mol Rep Dev 2000, 56:278-80. CrossRef
    47. Smith KR: The role of sperm-mediated gene transfer in genome mutation and evolution. / Med Hypotheses 2002, 59:433-37. CrossRef
    48. Dell'Anno A, Corinaldesi C: Degradation and turnover of extracellular DNA in marine sediments: Ecological and methodological considerations. / Appl Environ Microbiol 2004, 70:4384-386. CrossRef
    49. Liao D, Pavelitz T, Kidd JR, Kidd KK, Weiner AM: Concerted evolution of the tandemly repeated genes encoding human U2 snRNA (The RNU2 locus) involves rapid intrachromosomal homogenization and rare interchromosomal gene conversion. / EMBO J 1997, 16:588-98. CrossRef
    50. Pavelitz T, Liao D, Weiner AM: Concerted evolution of the tandem array enconding primate U2 snRNA (the RNU2 locus) is accompained by dramatic remodeling of the junctions with flanking chromosomal sequences. / EMBO J 1999, 18:3783-792. CrossRef
    51. Merlo MA, Cross I, Chairi H, Manchado M, Rebordinos L: Analysis of three multigene families as useful tools in species characterization of two closely-related species, Dicentrarchus labrax, Dicentrarchus punctatus and their hybrids. / Genes Genet Syst 2010, 85:341-49. CrossRef
    52. Merlo MA, Cross I, Rodríguez-Rúa A, Manchado M, Rebordinos L: First approach to studying the genetics of the meagre (Argyrosomus regius; Asso, 1801) using three multigene families. / Aquaculture Res 2012.
    53. Manchado M, Rebordinos L, Infante C: U1 and U2 Small Nuclear RNA Genetic Linkage: A Novel Molecular Tool for Identification of Six Sole Species (Soleidae, Pleuronectiformes). / J Agric Food Chem 2006, 54:3765-767. CrossRef
    54. Cuello P, Boyd DB, Dye MJ, Proudfoot NJ, Murphy S: Transcription of the human U2 snRNA genes continues beyond the 3' box in vivo. / EMBO J 1999, 18:2867-877. CrossRef
    55. Parry HD, Tebb G, Mattaj IW: The Xenopus U2 gene PSE is a single, compact, element required for transcription initiation and 3' end formation. / Nucleic Acids Res 1989, 17:3633-644. CrossRef
    56. Chow S, Ueno Y, Toyokawa M, Oohara I, Takeyama H: Preliminary analysis of length and GC content variation in the ribosomal first Internal Transcribed Spacer (ITS1) of marine animals. / Mar Biotechnol 2009, 11:301-06. CrossRef
    57. Pleyte KA, Duncan SD, Phillips RB: Evolutionary Relationships of the salmonid fish genus Salvelinus inferred fron DNA sequences of the first Internal Transcribed Spacer (ITS 1) of ribosomal DNA. / Mol Phylogenet Evol 1992, 1:223-30. CrossRef
    58. Gornung E, Colangelo P, Annesi F: 5S ribosomal RNA genes in six species of Mediterranean grey mullets: genomic organization and phylogenetic inference. / Genome 2007, 50:787-95. CrossRef
    59. Nirchio M, Turner BJ, Pérez JE, Gaviria JI, Cequea H: Karyotypes of three species of toadfish (Batrachoididae: Teleostei) from Venezuela. / Sci 2002, 66:1-.
    60. Matsubara K, Tarui H, Toriba M, Yamada K, Nishida-Umehara C, Agata K, Matsuda Y: Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes. / PNAS 2006, 103:18190-8195. CrossRef
    61. Subramanian S, Mishra RK, Singh L: Genome-wide analysis of Bkm sequences (GATA repeats): predominant association with sex chromosomes and potential role in higher order chromatin organization and function. / Bioinformatics 2003, 19:681-85. CrossRef
    62. Epplen JT, McCarrey JR, Sutou S, Olmo S: Base sequence of a cloned snake W-chromosome DNA fragment and identification of a male-specific putative mRNA in the mouse. / Proc Natl Acad Sci USA 1982, 79:3798-802. CrossRef
    63. Nanda I, Feichtinger W, Schmid M, Schroeder JH, Zischler H, Epplen JC: Simple repetitive sequences are associated with differentiation of the sex chromosomes in the guppy fish. / J Mol Evol 1990, 30:456-62. CrossRef
    64. Cioffi MB, Martins C, Vicari MR, Rebordinos L, Bertollo LAC: Differentiation of the XY sex chromosomes in the fish Hoplias malabaricus (Characiformes, Erythrinidae): Unusual accumulation of repetitive sequences on the X chromosome. / Sex Dev 2010, 4:176-85. CrossRef
    65. Cioffi MB, Molina WF, Moreira-Filho O, Bertollo LAC: Chromosomal distribution of repetitive DNA sequences highlights the independent differentiation of multiple sex chromosomes in two closely related fish species. / Cytogenet Genome Res 2011, 134:295-02. CrossRef
    66. Drouin G, Moniz de Sá M: The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. / Mol Biol Evol 1995, 12:481-93.
    67. Pendás AM, Morán P, Freije JP, García-Vazquez E: Chromosomal mapping and nucleotide sequence of two tandem repeats of Atlantic salmon 5S rDNA. / Cytogenet Cell Genet 1994, 67:31-6. CrossRef
    68. Kuriiwa K, Hanzawa N, Yoshino T, Kimura S, Nishida M: Phylogenetic relationships and natural hybridization in rabbitfishes (Teleostei: Siganidae) inferred from mitochondrial and nuclear DNA analyses. / Mol Phylogenet Evol 2007, 45:69-0. CrossRef
    69. Cross I: / Caracterización poblacional y citogenética de Crassostrea angulata. Análisis molecular del ADNr 5S en ostreidos. Cadiz University: Department of Biomedicine, Biotechnology and Public Health; 2005. [ / PhD Thesis]
    70. Cross I, Díaz E, Sanchez I, Rebordinos L: Molecular and cytogenetic characterization of Crassostrea angulata chromosomes. / Aquaculture 2005, 247:135-44. CrossRef
    71. Katoh K, Misawa K, Kuma K-I, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. / Nucleic Acids Res 2002, 30:3059-066. CrossRef
    72. Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. / Nucleic Acids Symp Ser 1999, 41:95-8.
    73. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. / J Mol Biol 1990, 215:403-10.
    74. Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. / Bioinformatics 2009, 25:1451-452. CrossRef
    75. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. / Mol Biol Evol 2011, 28:2731-739. CrossRef
    76. Kimura M: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. / J Mol Evol 1980, 16:111-20. CrossRef
    77. Reuter JS, Mathews DH: RNAstructure: software for RNA secondary structure prediction and analysis. / BMC Bioinforma 2010, 11:129-37. CrossRef
    78. Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. / Mol Biol Evol 1987, 4:406-25.
    79. Felsenstein J: Confidence limits on phylogenies: an approach using the bootstrap. / Evolution 1985, 39:783-91. CrossRef
    80. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. / Syst Biol 2010, 59:307-21. CrossRef
    81. Posada D: jModelTest: phylogenetic model averaging. / Mol Biol Evol 2008, 25:1253-256. CrossRef
    82. Lanave C, Preparata G, Saccone C, Serio G: A new method for calculating evolutionary substitution rates. / J Mol Evol 1984, 20:86-3. CrossRef
    83. Anisimova M, Gil M, Dufayard J-F, Dessimoz C, Gascuel O: Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. / Syst Biol 2011, 60:685-99. CrossRef
    84. Weigant J, Ried T, Nederlof PM, van der Ploeg M, Tanke HJ, Raap AK: In situ hybridization with fluoresceinated DNA. / Nucleic Acids Res 1991, 19:3237-241. CrossRef
    85. Jansen G, Devaere S, Weekers PHH, Adriaens D: Phylogenetic relationships and divergence time estimate of African anguilliform catfish (Siluriformes: Clariidae) inferred from ribosomal gene and spacer sequences. / Mol Phylogenet Evol 2006, 38:65-8. CrossRef
    86. Ijdo JW, Wells RA, Baldini A, Reeders ST: Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. / Nucleic Acids Res 1991, 19:4780. CrossRef
  • 作者单位:Manuel A Merlo (1)
    Ismael Cross (1)
    José L Palazón (2) (3)
    María úbeda-Manzanaro (1) (2)
    Carmen Sarasquete (2)
    Laureana Rebordinos (1)

    1. Laboratorio Genética, Facultad de Ciencias del Mar y Ambientales, CACYTMAR, Universidad de Cádiz, Puerto Real (Cádiz), 11510, Spain
    2. Instituto de Ciencias Marinas de Andalucía -CSIC, Polígono Río San Pedro, Puerto Real (Cádiz), 11510, Spain
    3. Instituto de Investigaciones Cientificas, Universidad de Oriente, Isla de Margarita, Venezuela
文摘
Background The Batrachoididae family is a group of marine teleosts that includes several species with more complicated physiological characteristics, such as their excretory, reproductive, cardiovascular and respiratory systems. Previous studies of the 5S rDNA gene family carried out in four species from the Western Atlantic showed two types of this gene in two species but only one in the other two, under processes of concerted evolution and birth-and-death evolution with purifying selection. Here we present results of the 5S rDNA and another two gene families in Halobatrachus didactylus, an Eastern Atlantic species, and draw evolutionary inferences regarding the gene families. In addition we have also mapped the genes on the chromosomes by two-colour fluorescence in situ hybridization (FISH). Results Two types of 5S rDNA were observed, named type α and type β. Molecular analysis of the 5S rDNA indicates that H. didactylus does not share the non-transcribed spacer (NTS) sequences with four other species of the family; therefore, it must have evolved in isolation. Amplification with the type β specific primers amplified a specific band in 9 specimens of H. didactylus and two of Sparus aurata. Both types showed regulatory regions and a secondary structure which mark them as functional genes. However, the U2 snRNA gene and the ITS-1 sequence showed one electrophoretic band and with one type of sequence. The U2 snRNA sequence was the most variable of the three multigene families studied. Results from two-colour FISH showed no co-localization of the gene coding from three multigene families and provided the first map of the chromosomes of the species. Conclusions A highly significant finding was observed in the analysis of the 5S rDNA, since two such distant species as H. didactylus and Sparus aurata share a 5S rDNA type. This 5S rDNA type has been detected in other species belonging to the Batrachoidiformes and Perciformes orders, but not in the Pleuronectiformes and Clupeiformes orders. Two hypotheses have been outlined: one is the possible vertical permanence of the shared type in some fish lineages, and the other is the possibility of a horizontal transference event between ancient species of the Perciformes and Batrachoidiformes orders. This finding opens a new perspective in fish evolution and in the knowledge of the dynamism of the 5S rDNA. Cytogenetic analysis allowed some evolutionary trends to be roughed out, such as the progressive change in the U2 snDNA and the organization of (GATA)n repeats, from dispersed to localized in one locus. The accumulation of (GATA)n repeats in one chromosome pair could be implicated in the evolution of a pair of proto-sex chromosomes. This possibility could situate H. didactylus as the most highly evolved of the Batrachoididae family in terms of sex chromosome biology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700