Comprehensive analysis of NAC transcription factors in diploid Gossypium: sequence conservation and expression analysis uncover their roles during fiber development
详细信息    查看全文
  • 作者:Haihong Shang ; Zhongna Wang ; Changsong Zou ; Zhen Zhang…
  • 关键词:cotton ; NAC gene family ; phylogeny ; expression patterns
  • 刊名:Science China Life Sciences
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:59
  • 期:2
  • 页码:142-153
  • 全文大小:5,423 KB
  • 参考文献:Cao, X. (2015). Whole genome sequencing of cotton-a new chapter in cotton genomics. Sci China Life Sci 58, 515–516.CrossRef PubMed
    Cenci, A., Guignon, V., Roux, N., and Rouard, M. (2014). Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots. Plant Mol Biol 85, 63–80.PubMedCentral CrossRef PubMed
    Dong, Z., and Chen, Y. (2013). Transcriptomics: advances and approaches. Sci China Life Sci 56, 960–967.CrossRef PubMed
    Fan, K., Wang, M., Miao, Y., Ni, M., Bibi, N., Yuan, S., Li, F., and Wang, X. (2014). Molecular evolution and expansion analysis of the NAC transcription factor in Zea mays. PLoS One 9, e111837.PubMedCentral CrossRef PubMed
    Fang, Y., You, J., Xie, K., Xie, W., and Xiong, L. (2008). Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics 280, 547–563.CrossRef PubMed
    Finn, R.D, Clements, J., and Eddy, S.R. (2011). HMMER web server: interactive sequence similarity searching. Nucleic Acids Re 39, W29–W37.CrossRef
    Hu, R., Qi, G., Kong, Y., Kong, D., Gao, Q., and Zhou, G. (2010). Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biol 10, 145.PubMedCentral CrossRef PubMed
    Hui, S., Yin, Y.B., Chen, F., Xu,Y., Richard, A,. and Dixon R.A. (2009). A bioinformatic analysis of NAC genes for plant cell wall development in relation to lignocellulosic bioenergy production. Bioenerg Res 2, 217–232.CrossRef
    Hussey, S.G., Saϊdi, M.N., Hefer, C.A., Myburg, A.A., and Grima-Pettenati, J. (2015). Structural, evolutionary and functional analysis of the NAC domain protein family in Eucalyptus. New Phytol 206, 1337–1350.CrossRef PubMed
    Ji, S., Lu, Y., Feng, J., Wei, G., Li, J., Shi, Y., Fu, Q., Liu, D., Luo, J., and Zhu, Y. (2003). Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array. Nucleic Acids Res 31, 2534–2543.PubMedCentral CrossRef PubMed
    Le, D.T., Nishiyama, R., Watanabe, Y., Mochida, K., Yamaguchi- Shinozaki, K., Shinozaki, K., and Tran, L.S. (2011). Genome-wide survey and expression analysis of the plant-specific NAC Transcription factor family in soybean during development and dehydration stress. DNA Res 18, 263–276.PubMedCentral CrossRef PubMed
    Lee, S., Seo, P.J., Lee, H.J., and Park, C.M. (2012). A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis. Plant 70, 831–844.CrossRef
    Li, F., Fan, G., Wang, K., Sun, F., Yuan, Y., Song, G., Qin, L., Ma, Z., Lu, C., Zou, C., Chen, W., Liang, X., Shang, H., Liu, W., Shi, C., Xiao, G., Gou, C., Ye, W., Xu, X., Zhang, X., Wei, H., Li, Z., Zhang, G., Wang, J., Liu, K., Kohel, R.J., Percy, R.G., Yu, J., Zhu, Y., and Yu, S. (2014). Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46, 567–572.CrossRef PubMed
    Li, Q., Lin, Y., Sun, Y., Song, J., Chen, H., Zhang, X., Sederoff, R.R., and Chiang, V.L. (2012). Splice variant of the SND1 transcription factor is a dominant negative of SND1 members and their regulation in Populus trichocarpa. Proc Natl Acad Sci USA 109, 14699–14704.PubMedCentral CrossRef PubMed
    Li, W., Huang, G., Zhou, W., Xia, X., Li, D., and Li, X. (2014). A cotton (Gossypium hirsutum) gene encoding a NAC transcription factor is involved in negative regulation of plant xylem development. Plant Physiol Biochem 83, 134–141.CrossRef PubMed
    Lynch, M., and Conery, J.S. (2000). The evolutionary fate and consequences of duplicate genes. Science 290, 1151–1155.CrossRef PubMed
    Mitsuda, N., Iwase, A., Yamamoto, H., Yoshida, M., Seki, M., Shinozaki, K., and Ohme-Takagi, M. (2007). NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19, 270–280.PubMedCentral CrossRef PubMed
    Mitsuda, N., Seki, M., Shinozaki, K., and Ohme-Takagi, M. (2005). The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17, 2993–3006.PubMedCentral CrossRef PubMed
    Nuruzzaman, M., Manimekalai, R., Sharoni, A.M., Satoh, K,, Kondoh, H., Ooka, H., and Kikuchi, S. (2010). Genome wide analysis of NAC transcription factor family in rice. Gene 465, 30–44.CrossRef PubMed
    Ohashi-Ito, K., Oda, Y., and Fukuda, H. (2010). Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation. Plant Cell 22, 3461–3473.PubMedCentral CrossRef PubMed
    Ooka, H., Satoh, K., Doi, K., Nagata, T., Otomo, Y., Murakami, K., Matsubara, K., Osato, N., Kawai, J., Carninci, P., Hayashizaki, Y., Suzuki, K., Kojima, K., Takahara, Y., Yamamoto, K., and Kikuchi, S. (2003). Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10, 239–247.CrossRef PubMed
    Pei, Y. (2015). The homeodomain-containing transcription factor, GhHOX3, is a key regulator of cotton fiber elongation. Sci China Life Sci 58, 309–310.CrossRef PubMed
    Pinheiro, G.L., Marques, C.S., Costa, M.D., Reis, P.A., Alves, M,S., Carvalho, C.M., Fietto, L.G., and Fontes, E.P. (2009). Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response. Gene 444, 10–23.CrossRef PubMed
    Puranik, S., Sahu, P.P., Mandal, S.N., B, V.S., Parida, S.K., and Prasad, M. (2013). Comprehensive genome-wide survey, genomic constitution and expression profiling of the nac transcription factor family in foxtail millet (Setaria italica L.). PLoS One 8, e64594.PubMedCentral CrossRef PubMed
    Qin, Y., and Zhu, Y. (2011). How cotton fibers elongate: a tale of linear cell growth mode. Curr Opin Plant Biol 14, 106–111.CrossRef PubMed
    Rushton, P.J., Bokowiec, M.T., Han, S., Zhang, H., Brannock, J.F., Chen, X., Laudeman, T.W., and Timko, M.P. (2008). Tobacco transcription factors: novel insights into transcriptional regulation in the Solanaceae, Plant Physiol 47, 280–295.
    Saeed, A.I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., Braist ed, J., Klapa, M., Currier, T., Thiagarajan, M., Sturn, A., Snuffin, M., Rezantsev, A., Popov, D., Ryltsov, A., Kostukovich, E., Borisovsky, I., Liu, Z., Vinsavich, A., Trush, V., and Quackenbush, J. (2003). TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34, 374–378.PubMed
    Shah, S.T., Pang, C., Fan, S., Song, M., Arain, S., and Yu, S. (2013). Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stresses. Gene 531, 220–234.CrossRef PubMed
    Shang, H., Li, W., Zou, C., and Yuan, Y. (2013). Analyses of the NAC Transcription factor gene family in Gossypium raimondii Ulbr.: chromosomal location, structure, phylogeny, and expression patterns. J Integr Plant Biol 55, 663–676.CrossRef PubMed
    Singh, A.K., Sharma, V., Pal, A.K., Acharya, V., and Ahuja, P.S. (2013). Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.) DNA Res 20, 403–423.PubMedCentral CrossRef PubMed
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731–2739.PubMedCentral CrossRef PubMed
    Wang, H., Zhao, Q., Chen, F., Wang, M., and Dixon, R.A. (2011). NAC domain function and transcriptional control of a secondary cell wall master switch. Plant J 68, 1104–1114.CrossRef PubMed
    Wang, K., Wang, Z., Li, F., Ye, W., Wang, J., Song, G., Yue, Z., Cong, L., Shang, H., Zhu, S., Zou, C., Li, Q., Yuan, Y., Lu, C., Wei, H., Gou, C., Zheng, Z., Yin, Y., Zhang, X., Liu, K., Wang, B., Song, C., Shi, N., Kohel, R., Percy, R.G., John, Z., Yu, J., Zhu, Y., Wang, J., and Yu, S. (2012). The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44, 1098–1103.CrossRef PubMed
    Wang, N., Zheng, Y., Xin, H., Fang, L., and Li, S. (2013). Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera. Plant Cell Rep 32, 61–75.CrossRef PubMed
    Yamaguchi, M., Mitsuda, N., Ohtani, M., Ohme-Takagi, M., Kato, K., and Demura, T. (2011). VASCULAR-RELATED NAC-DOMAIN7 directly regulates the expression of a broad range of genes for xylem vessel formation. Plant J 66, 579–590.CrossRef PubMed
    Yamaguchi, M., Ohtani, M., Mitsuda, N., Kubo, M., Ohme-Takagi, M., Fukuda, H., and Demura, T. (2010). VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. Plant Cell 22, 1249–1263.PubMedCentral CrossRef PubMed
    Yao, D., Wei, Q., Xu,W., Syrenne, R.D., Yuan, J., and Su, Z. (2012). Comparative genomic analysis of NAC transcriptional factors to dissect the regulatory mechanisms for cell wall biosynthesis. BMC Bioinformatics 15, S10.CrossRef
    You, J., Zhang, L., Song B., Qi X., and Chan Z. (2015). Systematic analysis and identification of stress-responsive genes of the NAC gene family in Brachypodium distachyon. PLoS One 10, e0122027.PubMedCentral CrossRef PubMed
    Zhang, G., Chen, M., Chen, X., Xu, Z., Guan, S., Li, L.C., Li, A., Guo, J., Mao, L., and Ma, Y. (2008). Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.), J Exp Bot 59, 4095–4107.PubMedCentral CrossRef PubMed
    Zhong, R., Demura, T., and Ye, Z. (2006). SND, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18, 3158–3170.PubMedCentral CrossRef PubMed
    Zhong, R., Richardson, E.A., and Ye, Z. (2007). Two NAC domain transcription factors, SND1 and NST, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta 225, 1603–1611.CrossRef PubMed
    Zhu, T., Nevo, E., Sun, D., and Peng, J. (2012). Phylogenetic analyses unravel the evolutionary history of NAC proteins in plants. Evolution 66, 1833–1848.CrossRef PubMed
    Zhu, Y., and Li, F. (2013). The Gossypium raimondii genome, a huge leap forward in cotton genomics. J Integr Plant Biol 55, 570–571.CrossRef PubMed
  • 作者单位:Haihong Shang (1)
    Zhongna Wang (1)
    Changsong Zou (1)
    Zhen Zhang (1)
    Weijie Li (1)
    Junwen Li (1)
    Yuzhen Shi (1)
    Wankui Gong (1)
    Tingting Chen (1)
    Aiying Liu (1)
    Juwu Gong (1)
    Qun Ge (1)
    Youlu Yuan (1)

    1. State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
  • 刊物主题:Life Sciences, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1869-1889
文摘
Determining how function evolves following gene duplication is necessary for understanding gene expansion. Transcription factors (TFs) are a class of proteins that regulate gene expression by binding to specific cis-acting elements in the promoters of target genes, subsequently activating or repressing their transcription. In the present study, we systematically examined the functional diversification of the NAC transcription factor (NAC-TFs) family by analyzing their chromosomal location, structure, phylogeny, and expression pattern in Gossypium raimondii (Gr) and G. arboreum (Ga). The 145 and 141 NAC genes identified in the Gr and Ga genomes, respectively, were annotated and divided into 18 subfamilies, which showed distinct divergence in gene structure and expression patterns during fiber development. In addition, when the functional parameters were examined, clear divergence was observed within tandem clusters, which suggested that subfunctionalization had occurred among duplicate genes. The expression patterns of homologous gene pairs also changed, suggestive of the diversification of gene function during the evolution of diploid cotton. These findings provide insights into the mechanisms underlying the functional differentiation of duplicated NAC-TFs genes in two diploid cotton species. Keywords cotton NAC gene family phylogeny expression patterns

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700