Genomic identification of microRNA promoters and their cis-acting elements in Populus
详细信息    查看全文
  • 作者:Min Chen ; Ming Wei ; Zhanghui Dong ; Hai Bao ; Yanwei Wang
  • 关键词:Populus ; miRNAs ; Promoter ; Cis ; acting elements
  • 刊名:Genes & Genomics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:38
  • 期:4
  • 页码:377-387
  • 全文大小:2,306 KB
  • 参考文献:Allawi HT, SantaLucia J Jr (1997) Thermodynamics and NMR of internal G.T mismatches in DNA. Biochemistry 36:10581–10594CrossRef PubMed
    Alonso-Peral MM, Li J, Li Y, Allen RS, Schnippenkoetter W, Ohms S, White RG, Millar AA (2010) The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol 154:757–771CrossRef PubMed PubMedCentral
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRef PubMed
    Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190CrossRef PubMed
    Chen L, Ren Y, Zhang Y, Xu J, Sun F, Zhang Z, Wang Y (2012a) Genome-wide identification and expression analysis of heat-responsive and novel microRNAs in Populus tomentosa. Gene 504:160–165CrossRef PubMed
    Chen L, Ren Y, Zhang Y, Xu J, Zhang Z, Wang Y (2012b) Genome-wide profiling of novel and conserved Populus microRNAs involved in pathogen stress response by deep sequencing. Planta 235:873–883CrossRef PubMed
    Chen L, Zhang Y, Ren Y, Xu J, Zhang Z, Wang Y (2012c) Genome-wide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing. Biochem Biophys Res Commun 417:892–896CrossRef PubMed
    Cui X, Xu SM, Mu DS, Yang ZM (2009) Genomic analysis of rice microRNA promoters and clusters. Gene 431:61–66CrossRef PubMed
    Danino YM, Even D, Ideses D, Juven-Gershon T (2015) The core promoter: at the heart of gene expression. Biochim Biophys Acta 1849:1116–1131CrossRef PubMed
    Dolferus R, Jacobs M, Peacock WJ, Dennis ES (1994) Differential interactions of promoter elements in stress responses of the Arabidopsis Adh gene. Plant Physiol 105:1075–1087CrossRef PubMed PubMedCentral
    Fujita Y, Yoshida T, Yamaguchi-Shinozaki K (2013) Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Plant 147:15–27CrossRef PubMed
    Han YQ, Hu Z, Zheng DF, Gao YM (2014) Analysis of promoters of microRNAs from a Glycine max degradome library. J Zhejiang Univ Sci B 15:125–132CrossRef PubMed PubMedCentral
    Hobo T, Asada M, Kowyama Y, Hattori T (1999) ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant J 19:679–689CrossRef PubMed
    Kanjanawattanawong S, Tangphatsornruang S, Triwitayakorn K, Ruang-areerate P, Sangsrakru D, Poopear S, Somyong S, Narangajavana J (2014) Characterization of rubber tree microRNA in phytohormone response using large genomic DNA libraries, promoter sequence and gene expression analysis. Mol Genet Genomics 289:921–933CrossRef PubMed
    Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J, Myint Phyu Sin Htwe N, Fujita Y, Sekita S, Shinozaki K, Yamaguchi-Shinozaki K (2015) Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J 81:505–518CrossRef PubMed
    Kim JS, Mizoi J, Yoshida T, Fujita Y, Nakajima J, Ohori T, Todaka D, Nakashima K, Hirayama T, Shinozaki K, Yamaguchi-Shinozaki K (2011) An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant Cell Physiol 52:2136–2146CrossRef PubMed
    Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327CrossRef PubMed PubMedCentral
    Li C, Yue J, Wu X, Xu C, Yu J (2014) An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress. J Exp Bot 65:5415–5427CrossRef PubMed PubMedCentral
    Licausi F, van Dongen JT, Giuntoli B, Novi G, Santaniello A, Geigenberger P, Perata P (2010) HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J 62:302–315CrossRef PubMed
    Liu YX, Han YP, Chang W, Zou Q, Gou MZ, Li WB (2010) Genomic analysis of microRNA promoters and their cis-acting elements in soybean. Agric Sci China 9:1561–1570CrossRef
    Lorkovic ZJ, Wieczorek Kirk DA, Lambermon MH, Filipowicz W (2000) Pre-mRNA splicing in higher plants. Trends Plant Sci 5:160–167CrossRef PubMed
    Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203CrossRef PubMed PubMedCentral
    Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55:131–151CrossRef PubMed
    Mishra S, Shukla A, Upadhyay S, Sanchita S, Sharma P, Singh S, Phukan UJ, Meena A, Khan F, Tripathi V, Shukla RK, Shrama A (2014) Identification, occurrence, and validation of DRE and ABRE cis-regulatory motifs in the promoter regions of genes of Arabidopsis thaliana. J Integr Plant Biol 56:388–399CrossRef PubMed
    Morey C, Mookherjee S, Rajasekaran G, Bansal M (2011) DNA free energy-based promoter prediction and comparative analysis of Arabidopsis and rice genomes. Plant Physiol 156:1300–1315CrossRef PubMed PubMedCentral
    Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci USA 102:3691–3696CrossRef PubMed PubMedCentral
    Ren Y, Chen L, Zhang Y, Kang X, Zhang Z, Wang Y (2012) Identification of novel and conserved Populus tomentosa microRNA as components of a response to water stress. Funct Integr Genomics 12:327–339CrossRef PubMed
    Ren Y, Sun F, Hou J, Chen L, Zhang Y, Kang X, Wang Y (2015) Differential profiling analysis of miRNAs reveals a regulatory role in low N stress response of Populus. Funct Integr Genomics 15:93–105CrossRef PubMed
    Rossi M, Trupiano D, Tamburro M, Ripabelli G, Montagnoli A, Chiatante D, Scippa GS (2015) MicroRNAs expression patterns in the response of poplar woody root to bending stress. Planta 242:339–351CrossRef PubMed
    Sadhukhan A, Kobayashi Y, Kobayashi Y, Tokizawa M, Yamamoto YY, Iuchi S, Koyama H, Panda SK, Sahoo L (2014) VuDREB2A, a novel DREB2-type transcription factor in the drought-tolerant legume cowpea, mediates DRE-dependent expression of stress-responsive genes and confers enhanced drought resistance in transgenic Arabidopsis. Planta 240:645–664CrossRef PubMed
    SantaLucia J Jr (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci USA 95:1460–1465CrossRef PubMed PubMedCentral
    Shahmuradov IA, Gammerman AJ, Hancock JM, Bramley PM, Solovyev VV (2003) PlantProm: a database of plant promoter sequences. Nucleic Acids Res 31:114–117CrossRef PubMed PubMedCentral
    Shahmuradov IA, Solovyev VV, Gammerman AJ (2005) Plant promoter prediction with confidence estimation. Nucleic Acids Res 33:1069–1076CrossRef PubMed PubMedCentral
    Shuai P, Liang D, Zhang Z, Yin W, Xia X (2013) Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis. BMC Genomics 14:233CrossRef PubMed PubMedCentral
    Si J, Zhou T, Bo W, Xu F, Wu R (2014) Genome-wide analysis of salt-responsive and novel microRNAs in Populus euphratica by deep sequencing. BMC Genet 15(Suppl 1):S6CrossRef PubMed PubMedCentral
    Ulmasov T, Hagen G, Guilfoyle TJ (1999) Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci USA 96:5844–5849CrossRef PubMed PubMedCentral
    Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H, Tang K, Han B, Tao Y (2007) Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 394:13–24CrossRef PubMed
    Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC (2005) Expression of Arabidopsis miRNA genes. Plant Physiol 138:2145–2154CrossRef PubMed PubMedCentral
    Xie F, Wang Q, Sun R, Zhang B (2015a) Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. J Exp Bot 66:789–804CrossRef PubMed PubMedCentral
    Xie M, Zhang S, Yu B (2015b) microRNA biogenesis, degradation and activity in plants. Cell Mol Life Sci 72:87–99CrossRef PubMed
    Yang J, Zhang N, Mi X, Wu L, Ma R, Zhu X, Yao L, Jin X, Si H, Wang D (2014) Identification of miR159s and their target genes and expression analysis under drought stress in potato. Comput Biol Chem 53PB:204–213CrossRef PubMed
    Yi X, Zhang Z, Ling Y, Xu W, Su Z (2015) PNRD: a plant non-coding RNA database. Nucleic Acids Res 43:D982–D989CrossRef PubMed PubMedCentral
    Zhang B, Pan X, Cobb GP, Anderson TA (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16CrossRef PubMed
    Zhang Z, Yu J, Li D, Zhang Z, Liu F, Zhou X, Wang T, Ling Y, Su Z (2010) PMRD: plant microRNA database. Nucleic Acids Res 38:D806–D813CrossRef PubMed PubMedCentral
    Zhao X, Li L (2013) Comparative analysis of microRNA promoters in Arabidopsis and rice. Genomics Proteomics Bioinform 11:56–60CrossRef
    Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590CrossRef PubMed
    Zhao JP, Jiang XL, Zhang BY, Su XH (2012) Involvement of microRNA-mediated gene expression regulation in the pathological development of stem canker disease in Populus trichocarpa. PLoS One 7:e44968CrossRef PubMed PubMedCentral
    Zhao X, Zhang H, Li L (2013) Identification and analysis of the proximal promoters of microRNA genes in Arabidopsis. Genomics 101:187–194CrossRef PubMed
    Zhou X, Ruan J, Wang G, Zhang W (2007) Characterization and identification of microRNA core promoters in four model species. PLoS Comput Biol 3:e37CrossRef PubMed PubMedCentral
    Zhou M, Sun J, Wang QH, Song LQ, Zhao G, Wang HZ, Yang HX, Li X (2011) Genome-wide analysis of clustering patterns and flanking characteristics for plant microRNA genes. FEBS J 278:929–940CrossRef PubMed
  • 作者单位:Min Chen (1) (2) (3)
    Ming Wei (1) (2) (3)
    Zhanghui Dong (4)
    Hai Bao (1) (2) (3)
    Yanwei Wang (1) (2) (3)

    1. National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, People’s Republic of China
    2. Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, People’s Republic of China
    3. College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People’s Republic of China
    4. Shijiazhuang Scientific Institute of Agriculture, Shijiazhuang, 050041, People’s Republic of China
  • 刊物主题:Microbial Genetics and Genomics; Plant Genetics & Genomics; Animal Genetics and Genomics; Human Genetics;
  • 出版者:Springer Netherlands
  • ISSN:2092-9293
文摘
MicroRNAs (miRNAs) are non-coding single-stranded RNAs of appropriately 21 nucleotides in length that negatively regulate post-transcriptional processes in plants and animals. In recent years, while an increasing number of miRNAs has been identified in various species, little is known regarding the specific transcriptional regulation of miRNAs in Populus. In this investigation, 368 miRNAs belonging to 37 miRNA families in Populus were analyzed to identify promoter regions and predict the distribution patterns of core promoter elements [TATA boxes and transcription start sites (TSSs)], as well as main cis-acting elements through a bioinformatics approach. A total of 368 precursor miRNA (pre-miRNA) gene loci belonging to 213 unique miRNAs were detected. We identified 229 promoters and further predicted 121 TSSs and TATA boxes for 139 pre-miRNAs. The conserved motifs, base composition and the average free energy profiles in the neighboring regions of TSSs were further analyzed. In addition, 101 types of cis-acting elements, such as anaerobic induction elements, abscisic acid-response elements, and MYB binding sites, were predicted in the predicted promoter regions of the pre-miRNAs. The data obtained in our investigation may aid in the analysis of specific upstream sequences of pre-miRNAs for differential expression and further our understanding of the molecular biology of miRNAs in Populus.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700