Identification of a Novel Rat NR2B Subunit Gene Promoter Region Variant and Its Association with Microwave-Induced Neuron Impairment
详细信息    查看全文
  • 作者:Li-Feng Wang ; Da-Wei Tian ; Hai-Juan Li ; Ya-Bing Gao…
  • 关键词:NR2B ; Microwave ; Promoter ; Polymorphism ; Neurons ; Association
  • 刊名:Molecular Neurobiology
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:53
  • 期:4
  • 页码:2100-2111
  • 全文大小:661 KB
  • 参考文献:1.Fritze K, Wiessner C, Kuster N et al (1997) Effect of global system for mobile communication microwave exposure on the genomic response of the rat brain. Neuroscience 81(3):627–639CrossRef PubMed
    2.Elwood JM (2012) Microwaves in the cold war: the Moscow embassy study and its interpretation. Review of a retrospective cohort study. Environ Health : Global Access Sci Source 11:85CrossRef
    3.Kumar S, Kesari KK, Behari J (2011) The therapeutic effect of a pulsed electromagnetic field on the reproductive patterns of male Wistar rats exposed to a 2.45-GHz microwave field. Clinics 66(7):1237–1245CrossRef PubMed PubMedCentral
    4.Baranski S (1972) Histological and histochemical effect of microwave irradiation on the central nervous system of rabbits and guinea pigs. Am J Phys Med 51(4):182–191PubMed
    5.Albert EN, DeSantis M (1975) Do microwaves alter nervous system structure? Ann N Y Acad Sci 247:87–108CrossRef PubMed
    6.Albert EN, Sherif M (1988) Morphological changes in cerebellum of neonatal rats exposed to 2.45 GHz microwaves. Prog Clin Biol Res 257:135–151PubMed
    7.Hansson HA (1988) Effects on the nervous system by exposure to electromagnetic fields: experimental and clinical studies. Prog Clin Biol Res 257:119–134PubMed
    8.Lai H, Horita A, Guy AW (1994) Microwave irradiation affects radial-arm maze performance in the rat. Bioelectromagnetics 15(2):95–104CrossRef PubMed
    9.Salford LG, Brun AE, Eberhardt JL, Malmgren L, Persson BR (2003) Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ Health Perspect 111(7):881–883, discussion A408CrossRef PubMed PubMedCentral
    10.Zhao L, Peng RY, Wang SM et al (2012) Relationship between cognition function and hippocampus structure after long-term microwave exposure. Biomed Environ Sci : BES 25(2):182–188PubMed
    11.Rubin GJ, Das Munshi J, Wessely S (2006) A systematic review of treatments for electromagnetic hypersensitivity. Psychother Psychosom 75(1):12–18CrossRef PubMed
    12.Rubin GJ, Hillert L, Nieto-Hernandez R, van Rongen E, Oftedal G (2011) Do people with idiopathic environmental intolerance attributed to electromagnetic fields display physiological effects when exposed to electromagnetic fields? A systematic review of provocation studies. Bioelectromagnetics 32(8):593–609CrossRef PubMed
    13.Carrubba S, Frilot C, Chesson AL, Marino AA (2007) Nonlinear EEG activation evoked by low-strength low-frequency magnetic fields. Neurosci Lett 417(2):212–216CrossRef PubMed
    14.Marino AA, Carrubba S (2009) The effects of mobile-phone electromagnetic fields on brain electrical activity: a critical analysis of the literature. Electromagn Biol Med 28(3):250–274CrossRef PubMed
    15.Gonda X (2012) Basic pharmacology of NMDA receptors. Curr Pharm Des 18(12):1558–1567CrossRef PubMed
    16.Anticevic A, Gancsos M, Murray JD et al (2012) NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia. Proc Natl Acad Sci U S A 109(41):16720–16725CrossRef PubMed PubMedCentral
    17.Cull-Candy SG, Leszkiewicz DN (2004) Role of distinct NMDA receptor subtypes at central synapses. Science’s STKE: Signal Transduct Knowl Environ 2004(255):re16
    18.Rebola N, Srikumar BN, Mulle C (2010) Activity-dependent synaptic plasticity of NMDA receptors. J Physiol 588(Pt 1):93–99CrossRef PubMed PubMedCentral
    19.Fontan-Lozano A, Suarez-Pereira I, Gonzalez-Forero D, Carrion AM (2011) The A-current modulates learning via NMDA receptors containing the NR2B subunit. PLoS One 6(9):e24915CrossRef PubMed PubMedCentral
    20.Zhang XH, Wu LJ, Gong B, Ren M, Li BM, Zhuo M (2008) Induction- and conditioning-protocol dependent involvement of NR2B-containing NMDA receptors in synaptic potentiation and contextual fear memory in the hippocampal CA1 region of rats. Mol Brain 1:9CrossRef PubMed PubMedCentral
    21.Sacchetti E, Scassellati C, Minelli A et al (2013) Schizophrenia susceptibility and NMDA-receptor mediated signalling: an association study involving 32 tagSNPs of DAO, DAOA, PPP3CC, and DTNBP1 genes. BMC Med Genet 14:33CrossRef PubMed PubMedCentral
    22.Alonso P, Gratacos M, Segalas C et al (2012) Association between the NMDA glutamate receptor GRIN2B gene and obsessive-compulsive disorder. J Psychiatry Neurosci : JPN 37(4):273–281CrossRef PubMed PubMedCentral
    23.Zhao Q, Che R, Zhang Z et al (2011) Positive association between GRIN2B gene and bipolar disorder in the Chinese Han Population. Psychiatry Res 185(1–2):290–292CrossRef PubMed
    24.Wu SL, Wang WF, Shyu HY et al (2010) Association analysis of GRIN1 and GRIN2B polymorphisms and Parkinson's disease in a hospital-based case–control study. Neurosci Lett 478(2):61–65CrossRef PubMed
    25.Chen C, Li X, Wang T et al (2010) Association between NMDA receptor subunit 2b gene polymorphism and Alzheimer's disease in Chinese Han population in Shanghai. Neurosci Bull 26(5):395–400CrossRef PubMed
    26.Jiang H, Jia J (2009) Association between NR2B subunit gene (GRIN2B) promoter polymorphisms and sporadic Alzheimer's disease in the North Chinese population. Neurosci Lett 450(3):356–360CrossRef PubMed
    27.Seripa D, Matera MG, Franceschi M et al (2008) Association analysis of GRIN2B, encoding N-methyl-D-aspartate receptor 2B subunit, and Alzheimer's disease. Dement Geriatr Cogn Disord 25(3):287–292CrossRef PubMed
    28.Martucci L, Wong AH, De Luca V et al (2006) N-methyl-D-aspartate receptor NR2B subunit gene GRIN2B in schizophrenia and bipolar disorder: Polymorphisms and mRNA levels. Schizophr Res 84(2–3):214–221CrossRef PubMed
    29.Hardell L, Carlberg M, Hansson MK (2013) Use of mobile phones and cordless phones is associated with increased risk for glioma and acoustic neuroma. Pathophysiology : Off J Int Soc Pathophysiol / ISP 20(2):85–110CrossRef
    30.Yang Y, Jin X, Yan C, Tian Y, Tang J, Shen X (2008) Case-only study of interactions between DNA repair genes (hMLH1, APEX1, MGMT, XRCC1 and XPD) and low-frequency electromagnetic fields in childhood acute leukemia. Leuk Lymphoma 49(12):2344–2350CrossRef PubMed
    31.Zhang Y, Yu Z, Xie Y, Fang Q (2008) Effects of microwave irradiation on NMDA receptor subunits mRNA expressions in rat hippocampus. Wei Sheng Yan Jiu = J Hyg Res 37(1):25–28
    32.Xu S, Ning W, Xu Z, Zhou S, Chiang H, Luo J (2006) Chronic exposure to GSM 1800-MHz microwaves reduces excitatory synaptic activity in cultured hippocampal neurons. Neurosci Lett 398(3):253–257CrossRef PubMed
    33.Bai G, Kusiak JW (1995) Functional analysis of the proximal 5'-flanking region of the N-methyl-D-aspartate receptor subunit gene, NMDAR1. J Biol Chem 270(13):7737–7744PubMed
    34.Klein M, Pieri I, Uhlmann F, Pfizenmaier K, Eisel U (1998) Cloning and characterization of promoter and 5'-UTR of the NMDA receptor subunit epsilon 2: evidence for alternative splicing of 5'-non-coding exon. Gene 208(2):259–269CrossRef PubMed
    35.Sasner M, Buonanno A (1996) Distinct N-methyl-D-aspartate receptor 2B subunit gene sequences confer neural and developmental specific expression. J Biol Chem 271(35):21316–21322CrossRef PubMed
    36.Durand GM, Bennett MV, Zukin RS (1993) Splice variants of the N-methyl-D-aspartate receptor NR1 identify domains involved in regulation by polyamines and protein kinase C. Proc Natl Acad Sci U S A 90(14):6731–6735CrossRef PubMed PubMedCentral
    37.Malyapa RS, Ahern EW, Straube WL, Moros EG, Pickard WF, Roti Roti JL (1997) Measurement of DNA damage after exposure to 2450 MHz electromagnetic radiation. Radiat Res 148(6):608–617CrossRef PubMed
    38.Lagroye I, Anane R, Wettring BA et al (2004) Measurement of DNA damage after acute exposure to pulsed-wave 2450 MHz microwaves in rat brain cells by two alkaline comet assay methods. Int J Radiat Biol 80(1):11–20CrossRef PubMed
    39.Belyaev IY, Koch CB, Terenius O et al (2006) Exposure of rat brain to 915 MHz GSM microwaves induces changes in gene expression but not double stranded DNA breaks or effects on chromatin conformation. Bioelectromagnetics 27(4):295–306CrossRef PubMed
    40.Sarkar S, Ali S, Behari J (1994) Effect of low power microwave on the mouse genome: a direct DNA analysis. Mutat Res 320(1–2):141–147CrossRef PubMed
    41.Lai H, Singh NP (1995) Acute low-intensity microwave exposure increases DNA single-strand breaks in rat brain cells. Bioelectromagnetics 16(3):207–210CrossRef PubMed
    42.Lai H, Singh NP (1996) Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. Int J Radiat Biol 69(4):513–521CrossRef PubMed
    43.Lai H, Singh NP (1997) Acute exposure to a 60 Hz magnetic field increases DNA strand breaks in rat brain cells. Bioelectromagnetics 18(2):156–165CrossRef PubMed
    44.Campisi A, Gulino M, Acquaviva R et al (2010) Reactive oxygen species levels and DNA fragmentation on astrocytes in primary culture after acute exposure to low intensity microwave electromagnetic field. Neurosci Lett 473(1):52–55CrossRef PubMed
    45.Liu C, Duan W, Xu S et al (2013) Exposure to 1800 MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line. Toxicol Lett 218(1):2–9CrossRef PubMed
    46.Wang LF, Peng RY, Hu XJ et al (2007) Influence of microwave radiation on synaptic structure and function of hippocampus in Wistar rats. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi = Zhonghua Laodong Weisheng Zhiyebing Zazhi = Chin J Ind Hyg Occup Dis 25(4):211–214
    47.Zhao YL, Peng XD, Yang YH, Ma HB, Song JP, Pu JS (2004) Effects of 2450 MHz microwave on long-term potentiation of hippocampus and lipofuscin contents in rat brain. Hang Tian Yi Xue Yu Yi Xue Gong Cheng = Space Med Med Eng 17(2):111–113
    48.Xu ZW, Hou B, Li YF et al (2007) Theophylline attenuates microwave-induced impairment of memory acquisition. Neurosci Lett 412(2):129–133CrossRef PubMed
    49.Megha K, Deshmukh PS, Banerjee BD, Tripathi AK, Abegaonkar MP (2012) Microwave radiation induced oxidative stress, cognitive impairment and inflammation in brain of Fischer rats. Indian J Exp Biol 50(12):889–896PubMed
    50.Li YH, Lu GB, Shi CH, Zhang Z, Xu Q (2011) Effects of 2000 muW/cm2; electromagnetic radiation on expression of immunoreactive protein and mRNA of NMDA receptor 2A subunit in rats hippocampus. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi = Chin J Cell Mol Immunol 27(1):15–18
    51.Mausset-Bonnefont AL, Hirbec H, Bonnefont X, Privat A, Vignon J, de Seze R (2004) Acute exposure to GSM 900-MHz electromagnetic fields induces glial reactivity and biochemical modifications in the rat brain. Neurobiol Dis 17(3):445–454CrossRef PubMed
    52.Crozier RA, Bi C, Han YR, Plummer MR (2008) BDNF modulation of NMDA receptors is activity dependent. J Neurophysiol 100(6):3264–3274CrossRef PubMed PubMedCentral
    53.Aliaga E, Rage F, Bustos G, Tapia-Arancibia L (1998) BDNF gene transcripts in mesencephalic neurons and its differential regulation by NMDA. Neuroreport 9(9):1959–1962CrossRef PubMed
    54.Wang LF, Peng RY, Hu XJ et al (2008) Influence of microwave radiation on synapsin I expression in PC12 cells and its mechanism. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi = Chin J Cell Mol Immunol 24(7):655–659
    55.Baumbauer KM, Huie JR, Hughes AJ, Grau JW (2009) Timing in the absence of supraspinal input II: regularly spaced stimulation induces a lasting alteration in spinal function that depends on the NMDA receptor, BDNF release, and protein synthesis. J Neurosci : Off J Soc Neurosci 29(46):14383–14393CrossRef
    56.Zeni O, Sannino A, Sarti M, Romeo S, Massa R, Scarfi MR (2012) Radiofrequency radiation at 1950 MHz (UMTS) does not affect key cellular endpoints in neuron-like PC12 cells. Bioelectromagnetics 33(6):497–507CrossRef PubMed
    57.Nakazawa K, Sun LD, Quirk MC, Rondi-Reig L, Wilson MA, Tonegawa S (2003) Hippocampal CA3 NMDA receptors are crucial for memory acquisition of one-time experience. Neuron 38(2):305–315CrossRef PubMed
    58.Varas MM, Perez MF, Ramirez OA, de Barioglio SR (2003) Increased susceptibility to LTP generation and changes in NMDA-NR1 and -NR2B subunits mRNA expression in rat hippocampus after MCH administration. Peptides 24(9):1403–1411CrossRef PubMed
    59.Loftis JM, Janowsky A (2003) The N-methyl-D-aspartate receptor subunit NR2B: localization, functional properties, regulation, and clinical implications. Pharmacol Ther 97(1):55–85CrossRef PubMed
    60.Mawhinney LJ, de Rivero Vaccari JP, Alonso OF et al (2012) Isoflurane/nitrous oxide anesthesia induces increases in NMDA receptor subunit NR2B protein expression in the aged rat brain. Brain Res 1431:23–34CrossRef PubMed PubMedCentral
    61.Yoshii A, Constantine-Paton M (2007) BDNF induces transport of PSD-95 to dendrites through PI3K-AKT signaling after NMDA receptor activation. Nat Neurosci 10(6):702–711CrossRef PubMed
  • 作者单位:Li-Feng Wang (1)
    Da-Wei Tian (2) (3)
    Hai-Juan Li (1)
    Ya-Bing Gao (1)
    Chang-Zhen Wang (1)
    Li Zhao (1)
    Hong-Yan Zuo (1)
    Ji Dong (1)
    Si-Mo Qiao (1)
    Yong Zou (1)
    Lu Xiong (1)
    Hong-Mei Zhou (4)
    Yue-Feng Yang (5)
    Rui-Yun Peng (1)
    Xiang-Jun Hu (1)

    1. Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
    2. Vestibular Laboratory, Institute of Aviation Medicine, 28 Fucheng Road, Beijing, 100142, China
    3. Department of Aerospace Medicine Aerospace Biodynamics, The Fourth Military Medical University, 169 Changlexi Road, Xian, 100032, China
    4. Radiation Protection, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
    5. Experimental Hematology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
  • 刊物主题:Neurosciences; Neurobiology; Cell Biology; Neurology;
  • 出版者:Springer US
  • ISSN:1559-1182
文摘
Microwave radiation has been implicated in cognitive dysfunction and neuronal injury in animal models and in human investigations; however, the mechanism of these effects is unclear. In this study, single nucleotide polymorphism (SNP) sites in the rat GRIN2B promoter region were screened. The associations of these SNPs with microwave-induced rat brain dysfunction and with rat pheochromocytoma-12 (PC12) cell function were investigated. Wistar rats (n = 160) were exposed to microwave radiation (30 mW/cm2 for 5 min/day, 5 days/week, over a period of 2 months). Screening of the GRIN2B promoter region revealed a stable C-to-T variant at nucleotide position −217 that was not induced by microwave exposure. The learning and memory ability, amino acid contents in the hippocampus and cerebrospinal fluid, and NR2B expression were then investigated in the different genotypes. Following microwave exposure, NR2B protein expression decreased, while the Glu contents in the hippocampus and CSF increased, and memory impairment was observed in the TT genotype but not the CC and CT genotypes. In PC12 cells, the effects of the T allele were more pronounced than those of the C allele on transcription factor binding ability, transcriptional activity, NR2B mRNA, and protein expression. These effects may be related to the detrimental role of the T allele and the protective role of the C allele in rat brain function and PC12 cells exposed to microwave radiation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700