Genome-wide survey and expression analysis of the calcium-dependent protein kinase gene family in cassava
详细信息    查看全文
  • 作者:Wei Hu ; Xiaowan Hou ; Zhiqiang Xia ; Yan Yan ; Yunxie Wei…
  • 关键词:Abiotic stress ; CPK ; Expression ; Response ; Signaling
  • 刊名:Molecular Genetics and Genomics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:291
  • 期:1
  • 页码:241-253
  • 全文大小:1,727 KB
  • 参考文献:Asano T, Kunieda N, Omura Y, Ibe H, Kawasaki T, Takano M, Sato M, Furuhashi H, Mujin T, Takaiwa F, Wu Cy CY, Tada Y, Satozawa T, Sakamoto M, Shimada H (2002) Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development: phosphorylation of sucrose synthase is a possible factor. Plant Cell 14:619–628PubMed PubMedCentral CrossRef
    Asano T, Tanaka N, Yang G, Hayashi N, Komatsu S (2005) Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol 46:356–366PubMed CrossRef
    Asano T, Hakata M, Nakamura H, Aoki N, Komatsu S, Ichikawa H, Hirochika H, Ohsugi R (2011) Functional characterisation of OsCPK21, a calcium-dependent protein kinase that confers salt tolerance in rice. Plant Mol Biol 75:179–191PubMed CrossRef
    Asano T, Hayashi N, Kobayashi M (2012) A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J 69:26–36PubMed CrossRef
    Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485PubMed PubMedCentral CrossRef
    Choi HI, Park HJ, Park JH, Kim S, Im MY, Seo HH, Kim YW, Hwang I, Kim SY (2005) Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139:1750–1761PubMed PubMedCentral CrossRef
    Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:29–37CrossRef
    Franz S, Ehlert B, Liese A, Kurth J, Cazale AC, Romeis T (2011) Calcium-dependent protein kinase CPK21 functions in abiotic stress response in Arabidopsis thaliana. Mol Plant 4:83–96PubMed CrossRef
    Harmon AC, Gribskov M, Harper JF (2000) CDPKs-a kinase for every Ca2+ signal? Trends Plant Sci 5:154–159PubMed CrossRef
    Harper JF (2001) Dissecting calcium oscillators in plant cells. Trends Plant Sci 6:395–397PubMed CrossRef
    Harper JF, Sussman MR, Schaller GE, Putnam-Evans C, Charbonneau H, Harmon AC (1991) A calcium-dependent protein kinase with a regulatory domain similar to calmodulin. Science 252:951–954PubMed CrossRef
    Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052PubMed CrossRef
    Ho SL, Huang LF, Lu CA, He SL, Wang CC, Yu SP, Chen J, Yu SM (2013) Sugar starvation- and GA-inducible calcium-dependent protein kinase 1 feedback regulates GA biosynthesis and activates a 14-3-3 protein to confer drought tolerance in rice seedlings. Plant Mol Biol 81:347–361PubMed CrossRef
    Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267PubMed CrossRef
    Komatsu S, Yang G, Khan M, Onodera H, Toki S, Yamaguchi M (2007) Over-expression of calcium-dependent protein kinase 13 and calreticulin interacting protein 1 confers cold tolerance on rice plants. Mol Genet Genomics 277:713–723PubMed CrossRef
    Kong X, Lv W, Jiang S, Zhang D, Cai G, Pan J, Li D (2013) Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize. BMC Genom 14:433CrossRef
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace F, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMed CrossRef
    Li AL, Zhu YF, Tan XM, Wang X, Wei B, Guo HZ, Zhang ZL, Chen XB, Zhao GY, Kong XY, Jia JZ, Mao L (2008) Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L). Plant Mol Biol 66:429–443PubMed CrossRef
    Liu W, Li W, He Q, Daud MK, Chen J, Zhu S (2014) Genome-wide survey and expression analysis of calcium-dependent protein kinase in Gossypium raimondii. PLoS One 9:e98189PubMed PubMedCentral CrossRef
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408PubMed CrossRef
    Ma SY, Wu WH (2007) AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Mol Biol 65:511–518PubMed CrossRef
    Mehlmer N, Wurzinger B, Stael S, Hofmann-Rodrigues D, Csaszar E, Pfister B, Bayer R, Teige M (2010) The Ca2+-dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis. Plant J 63:484–498PubMed PubMedCentral CrossRef
    Mori IC, Murata Y, Yang Y, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, Kwak JM, Schroeder JI (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure. PLoS Biol 4:1749–1762CrossRef
    Okogbenin E, Setter TL, Ferguson M, Mutegi R, Ceballos H, Olasanmi B (2013) Phenotypic approaches to drought in cassava: review. Front Physiol 4:93PubMed PubMedCentral CrossRef
    Ray S, Agarwal P, Arora R, Kapoor S, Tyagi AK (2007) Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L ssp Indica). Mol Genet Genomics 278:493–505PubMed CrossRef
    Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327PubMed CrossRef
    Salcedo A, Zambrana C, Siritunga D (2014) Comparative expression analysis of reference genes in field-grown cassava. Tropical Plant Biol 7:53–64CrossRef
    Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. Plant Cell 11:691–706PubMed PubMedCentral CrossRef
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMed PubMedCentral CrossRef
    Tao P, Zhong X, Li B, Wang W, Yue Z, Lei J, Guo W, Huang X (2014) Genome-wide identification and characterization of aquaporin genes (AQPs) in Chinese cabbage (Brassica rapa ssp. pekinensis). Mol Genet Genomics 289:1131–1145PubMed CrossRef
    Tohge T, Fernie AR (2010) Combining genetic diversity, informatics and metabolomics to facilitate annotation of plant gene function. Nat Protoc 5:1210–1227PubMed CrossRef
    Utsumi Y, Tanaka M, Morosawa T, Kurotani A, Yoshida T, Mochida K, Matsui A, Umemura Y, Ishitani M, Shinozaki K, Sakurai T, Seki M (2012) Transcriptome analysis using a high-density oligomicroarray under drought stress in various genotypes of cassava: an important tropical crop. DNA Res 19:335–345PubMed PubMedCentral CrossRef
    Wang W, Feng B, Xiao J, Xia Z, Zhou X, Li P, Zhang W, Wang Y, Møller BL, Zhang P, Luo MC, Xiao G, Liu J, Yang J, Chen S, Rabinowicz PD, Chen X, Zhang HB, Ceballos H, Lou Q, Zou M, Carvalho LJ, Zeng C, Xia J, Sun S, Fu Y, Wang H, Lu C, Ruan M, Zhou S, Wu Z, Liu H, Kannangara RM, Jørgensen K, Neale RL, Bonde M, Heinz N, Zhu W, Wang S, Zhang Y, Pan K, Wen M, Ma PA, Li Z, Hu M, Liao W, Hu W, Zhang S, Pei J, Guo A, Guo J, Zhang J, Zhang Z, Ye J, Ou W, Ma Y, Liu X, Tallon LJ, Galens K, Ott S, Huang J, Xue J, An F, Yao Q, Lu X, Fregene M, López-Lavalle LA, Wu J, You FM, Chen M, Hu S, Wu G, Zhong S, Ling P, Chen Y, Wang Q, Liu G, Liu B, Li K, Peng M (2014) Cassava genome from a wild ancestor to cultivated varieties. Nat Commun 5:5110PubMed PubMedCentral CrossRef
    Wei S, Hu W, Deng X, Zhang Y, Liu X, Zhao X, Luo Q, Jin Z, Li Y, Zhou S, Sun T, Wang L, Yang G, He G (2014) A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility. BMC Plant Biol 14:133PubMed PubMedCentral CrossRef
    Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183PubMed PubMedCentral CrossRef
    Xu J, Tian YS, Peng RH, Xiong AS, Zhu B, Jin XF, Gao F, Fu XY, Hou XL, Yao QH (2010) AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta 231:1251–1260PubMed CrossRef
    Xu J, Duan X, Yang J, Beeching JR, Zhang P (2013) Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiol 161:1517–1528PubMed PubMedCentral CrossRef
    Zhang P, Wang WQ, Zhang GL, Kaminek M, Dobrev P, Xu J, Gruissem W (2010) Senescence-inducible expression of isopentenyl transferase extends leaf life, increases drought stress resistance and alters cytokinin metabolism in cassava. J Integr Plant Biol 52:653–669PubMed
    Zhang H, Liu WZ, Zhang Y, Deng M, Niu F, Yang B, Wang X, Wang B, Liang W, Deyholos MK, Jiang YQ (2014) Identification, expression and interaction analyses of calcium-dependent protein kinase (CPK) genes in canola (Brassica napus L.). BMC Genom 15:211CrossRef
    Zhao R, Sun HL, Mei C, Wang XJ, Yan L, Liu R, Zhang XF, Wang XF, Zhang DP (2011) The Arabidopsis Ca2+-dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth. New Phytol 192:61–73PubMed CrossRef
    Zhao P, Liu P, Shao J, Li C, Wang B, Guo X, Yan B, Xia Y, Peng M (2014) Analysis of different strategies adapted by two cassava cultivars in response to drought stress: ensuring survival or continuing growth. J Exp Bot. doi:10.​1093/​jxb/​eru507
    Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ, Xu YH, Zhang XY, Zhang DP (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19:3019–3036PubMed PubMedCentral CrossRef
    Zidenga T, Leyva-Guerrero E, Moon H, Siritunga D, Sayre R (2012) Extending cassava root shelf life via reduction of reactive oxygen species production. Plant Physiol 159:1396–1407PubMed PubMedCentral CrossRef
    Zou JJ, Wei FJ, Wang C, Wu JJ, Ratnasekera D, Liu WX, Wu WH (2010) Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiol 154:1232–1243PubMed PubMedCentral CrossRef
  • 作者单位:Wei Hu (1)
    Xiaowan Hou (1)
    Zhiqiang Xia (1)
    Yan Yan (1)
    Yunxie Wei (1)
    Lianzhe Wang (2)
    Meiling Zou (1)
    Cheng Lu (1)
    Wenquan Wang (1)
    Ming Peng (1)

    1. Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People’s Republic of China
    2. College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, 467000, Henan, People’s Republic of China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Biochemistry
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1617-4623
文摘
Calcium-dependent protein kinases (CPKs) play important roles in regulating plant tolerance to abiotic stress and signal transduction; however, no data are currently available regarding the CPK family in cassava. Herein, we identified 27 CPK genes from cassava based on our previous genome sequencing data. Phylogenetic analysis showed that cassava CPKs could be clustered into three groups, which was further supported by gene structure and conserved protein motif analyses. Global expression analysis suggested that MeCPK genes showed distinct expression patterns in different tissues between wild subspecies and cultivated varieties, indicating their involvement in the functional diversity of different varieties. Transcriptomics, interaction networks, and co-expression assays revealed a broad transcriptional response of cassava CPKs and CPK-mediated networks to drought stress and their differential expression profiles in different varieties, implying their contribution to drought stress tolerance in cassava. Expression analysis of eight MeCPK genes suggested a comprehensive response to osmotic stress, salt, cold, abscisic acid, and H2O2, which indicated that cassava CPKs might be convergence points for different signaling pathways. This study provides a basis for crop improvements and understanding of abiotic stress responses and signal transduction mediated by CPKs in cassava. Keywords Abiotic stress CPK Expression Response Signaling

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700