Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
详细信息    查看全文
  • 作者:Maria A. van Agthoven ; Mark P. Barrow…
  • 关键词:FT ; ICR MS ; Fourier transform ion cyclotron resonance mass spectrometry ; Two ; dimensional ; IRMPD ; Infrared multiphoton dissociation ; APPI ; Atmospheric pressure photoionization ; Cholesterol
  • 刊名:Journal of The American Society for Mass Spectrometry
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:26
  • 期:12
  • 页码:2105-2114
  • 全文大小:1,141 KB
  • 参考文献:1.Marshall, A.G., Hendrickson, C.L., Jackson, G.S.: Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17, 1鈥?5 (1998)CrossRef
    2.Marshall, A.G., Verdun, F.R.: Fourier transforms in NMR, optical, and mass spectrometry. A user's handbook. Elsevier, Amsterdam (1990)
    3.Marshall, A.G., Blakney, G.T., Beu, S.C., Hendrickson, C.L., McKenna, A.M., Purcell, J.M., Rodgers, R.P., Xian, F.: Petroleomics: a test bed for ultra-high-resolution fourier transform ion cyclotron resonance mass spectrometry. Eur. J. Mass Spectrom. 16, 367鈥?71 (2010)CrossRef
    4.Pfaendler, P., Bodenhausen, G., Rapin, J., Houriet, R., G盲umann, T.: Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry. Chem. Phys. Lett. 138, 195鈥?00 (1987)CrossRef
    5.Marshall, A.G., Wang, T.C.L., Ricca, T.L.: Ion cyclotron resonance excitation/deexcitation: a basis for stochastic Fourier transform ion cyclotron mass spectrometry. Chem. Phys. Lett. 105, 233鈥?36 (1984)CrossRef
    6.Guan, S., Jones, P.R.: A theory for two-dimensional Fourier-transform ion cyclotron resonance mass spectrometry. J. Chem. Phys. 91, 5291鈥?295 (1989)CrossRef
    7.van Agthoven, M.A., Delsuc, M.-A., Bodenhausen, G., Rolando, C.: Towards analytically useful two-dimensional Fourier transform ion cyclotron resonance mass spectrometry. Anal. Bioanal. Chem. 405, 51鈥?1 (2013)CrossRef
    8.Pfaendler, P., Bodenhausen, G., Rapin, J., Walser, M.E., G盲umann, T.: Broad-band two-dimensional Fourier transform ion cyclotron resonance. J. Am. Chem. Soc. 110, 5625鈥?628 (1988)CrossRef
    9.Bensimon, M., Zhao, G., G盲umann, T.: A method to generate phase continuity in two-dimensional Fourier transform ion cyclotron resonance mass spectrometry. Chem. Phys. Lett. 157, 97鈥?00 (1989)CrossRef
    10.Ross III, C.W., Guan, S., Grosshans, P.B., Ricca, T.L., Marshall, A.G.: Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry/mass spectrometry with stored-waveform ion radius modulation. J. Am. Chem. Soc. 115, 7854鈥?861 (1993)CrossRef
    11.Ross, C., Simonsick Jr., W.J., Aaserud, D.J.: Application of stored waveform ion modulation 2D-FTICR MS/MS to the analysis of complex mixtures. Anal. Chem. 74, 4625鈥?633 (2002)CrossRef
    12.van der Rest, G., Marshall, A.G.: Noise analysis for 2D tandem Fourier transform ion cyclotron resonance mass spectrometry. Int. J. Mass Spectrom. 210/211, 101鈥?11 (2001)CrossRef
    13.van Agthoven, M.A., Delsuc, M.-A., Rolando, C.: Two-dimensional FT-ICR/MS with IRMPD as fragmentation mode. Int. J. Mass Spectrom. 306, 196鈥?03 (2011)CrossRef
    14.van Agthoven, M.A., Chiron, L., Coutouly, M.-A., Delsuc, M.-A., Rolando, C.: Two-dimensional ECD FT-ICR mass spectrometry of peptides and glycopeptides. Anal. Chem. 84, 5589鈥?595 (2012)CrossRef
    15.van Agthoven, M.A., Coutouly, M.-A., Rolando, C., Delsuc, M.-A.: Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry: reduction of scintillation noise using Cadzow data processing. Rapid Commun. Mass Spectrom. 25, 1609鈥?616 (2011)CrossRef
    16.Chiron, L., van Agthoven, M.A., Kieffer, B., Rolando, C., Delsuc, M.-A.: Efficient denoising algorithms for large experimental datasets and their applications in Fourier transform ion cyclotron resonance mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 111, 1385鈥?390 (2014)CrossRef
    17.van Agthoven, M.A., Chiron, L., Coutouly, M.-A., Sehgal, A.A., Pelupessy, P., Delsuc, M.-A., Rolando, C.: Optimization of the discrete pulse sequence for two-dimensional FT-ICR mass spectrometry using infrared multiphoton dissociation. Int. J. Mass Spectrom. 370, 114鈥?24 (2014)CrossRef
    18.Raffaelli, A., Saba, A.: Atmospheric pressure photoionization mass spectrometry. Mass Spectrom. Rev. 22, 318鈥?31 (2003)CrossRef
    19.Robb, D.B., Covey, T.R., Bruins, A.P.: Atmospheric pressure photoionization: an ionization method for liquid chromatography-mass spectrometry. Anal. Chem. 72, 3653鈥?659 (2000)CrossRef
    20.Barrow, M.P., Witt, M., Headley, J.V., Peru, K.M.: Athabasca oil sands process water: characterization by atmospheric pressure photoionization and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 82, 3727鈥?735 (2010)CrossRef
    21.Griffiths, M.T., Da Campo, R., O'Connor, P.B., Barrow, M.P.: Throwing light on petroleum: simulated exposure of crude oil to sunlight and characterization using atmospheric pressure photoionization fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 86, 527鈥?34 (2014)CrossRef
    22.Kauppila, T.J., Kuuranne, T., Meurer, E.C., Eberlin, M.N., Kotiaho, T., Kostiainen, R.: Atmospheric pressure photoionization mass spectrometry. Ionization mechanism and the effect of solvent on the ionization of naphthalenes. Anal. Chem. 74, 5470鈥?479 (2002)CrossRef
    23.Wyllie, S.G., Amos, B.A., Tokes, L.: Electron impact induced fragmentation of cholesterol and related C-5 unsaturated steroids. J. Org. Chem. 42, 725鈥?32 (1977)CrossRef
    24.Gabrielse, G., Haarsma, L., Rolston, S.L.: Open-endcap Penning traps for high precision experiments. Int. J. Mass Spectrom. Ion Processes 88, 319鈥?32 (1989)CrossRef
    25.Kilgour, D.P.A., Wills, R., Qi, Y., O'Connor, P.B.: Autophaser: an algorithm for automated generation of absorption mode spectra for FT-ICR MS. Anal. Chem. 85, 3903鈥?911 (2013)CrossRef
    26.Qi, Y., Barrow, M.P., Van Orden, S.L., Thompson, C.J., Li, H., Perez-Hurtado, P., O'Connor, P.B.: Variation of the Fourier transform mass spectra phase function with experimental parameters. Anal. Chem. 83, 8477鈥?483 (2011)CrossRef
    27.Qi, Y., Barrow, M.P., Li, H., Meier, J.E., Van Orden, S.L., Thompson, C.J., O'Connor, P.B.: Absorption-mode: the next generation of fourier transform mass spectra. Anal. Chem. 84, 2923鈥?929 (2012)CrossRef
    28.Qi, Y., Li, H., Wills, R.H., Perez-Hurtado, P., Yu, X., Kilgour, D.P.A., Barrow, M.P., Lin, C., O'Connor, P.B.: Absorption-mode Fourier transform mass spectrometry: the effects of apodization and phasing on modified protein spectra. J. Am. Soc. Mass Spectrom. 24, 828鈥?34 (2013)CrossRef
    29.Qi, Y., Thompson, C.J., Van Orden, S.L., O'Connor, P.B.: Phase correction of Fourier transform ion cyclotron resonance mass spectra using MatLab. J. Am. Soc. Mass Spectrom. 22, 138鈥?47 (2011)CrossRef
    30.Qi, Y., Witt, M., Jertz, R., Baykut, G., Barrow, M.P., Nikolaev, E.N., O'Connor, P.B.: Absorption-mode spectra on the dynamically harmonized Fourier transform ion cyclotron resonance cell. Rapid Commun. Mass Spectrom. 26, 2021鈥?026 (2012)CrossRef
    31.Qi, Y., O'Connor, P.B.: Data processing in Fourier transform ion cyclotron resonance mass spectrometry. Mass Spectrom. Rev. 33, 333鈥?52 (2014)CrossRef
    32.Cho, Y., Qi, Y., O'Connor, P.B., Barrow, M.P., Kim, S.: Application of phase correction to improve the interpretation of crude oil spectra obtained using 7 T Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 25, 154鈥?57 (2014)CrossRef
    33.Ledford Jr., E.B., Rempel, D.L., Gross, M.L.: Space charge effects in Fourier transform mass spectrometry. II. Mass calibration. Anal. Chem. 56, 2744鈥?748 (1984)CrossRef
    34.Pons, J.-L., Malliavin, T.E., Delsuc, M.A., Gifa, V.: 4: a complete package for NMR data set processing. J. Biomol. NMR 8, 445鈥?52 (1996)CrossRef
    35.Francl, T.J., Sherman, M.G., Hunter, R.L., Locke, M.J., Bowers, W.D., McIver Jr., R.T.: Experimental determination of the effects of space charge on ion cyclotron resonance frequencies. Int. J. Mass Spectrom. Ion Processes 54, 189鈥?99 (1983)CrossRef
    36.Shi, S.D.H., Drader, J.J., Freitas, M.A., Hendrickson, C.L., Marshall, A.G.: Comparison and interconversion of the two most common frequency-to-mass calibration functions for fourier transform ion cyclotron resonance mass spectrometry. Int. J. Mass Spectrom. 195/196, 591鈥?98 (2000)CrossRef
    37.Chapman, J.D., Goodlett, D.R., Masselon, C.D.: Multiplexed and data-independent tandem mass spectrometry for global proteome profiling. Mass Spectrom. Rev. 33, 452鈥?70 (2014)CrossRef
    38.Louris, J.N., Brodbelt-Lustig, J.S., Cooks, R.G., Glish, G.L., Van Berkel, G.J., McLuckey, S.A.: Ion isolation and sequential stages of mass spectrometry in a quadrupole ion trap mass spectrometer. Int. J. Mass Spectrom. Ion Processes 96, 117鈥?37 (1990)CrossRef
    39.Chen, L., Wang, T.C.L., Ricca, T.L., Marshall, A.G.: Phase-modulated stored waveform inverse Fourier transform excitation for trapped ion mass spectrometry. Anal. Chem. 59, 449鈥?54 (1987)CrossRef
    40.O'Connor, P.B., McLafferty, F.W.: High-resolution ion isolation with the ion cyclotron resonance capacitively coupled open cell. J. Am. Soc. Mass Spectrom. 6, 533鈥?35 (1995)CrossRef
    41.de Koning, L.J., Nibbering, N.M.M., van Orden, S.L., Laukien, F.H.: Mass selection of ions in a Fourier transform ion cyclotron resonance trap using correlated harmonic excitation fields (CHEF). Int. J. Mass Spectrom. Ion Processes 165/166, 209鈥?19 (1997)CrossRef
    42.McDonald, L.A., Barbieri, L.R., Carter, G.T., Kruppa, G., Feng, X., Lotvin, J.A., Siegel, M.M.: FTMS structure elucidation of natural products: application to muraymycin antibiotics using ESI multi-CHEF SORI-CID FTMSn, the top-down/bottom-up approach, and HPLC ESI capillary-skimmer CID FTMS. Anal. Chem. 75, 2730鈥?739 (2003)CrossRef
    43.Wills, R.H., O'Connor, P.B.: Structural characterization of actinomycin d using multiple ion isolation and electron induced dissociation. J. Am. Soc. Mass Spectrom. 25, 186鈥?95 (2014)CrossRef
    44.Wang, T.C.L., Ricca, T.L., Marshall, A.G.: Extension of dynamic range in Fourier transform ion cyclotron resonance mass spectrometry via stored waveform inverse Fourier transform excitation. Anal. Chem. 58, 2935鈥?938 (1986)CrossRef
    45.Guan, S., Marshall, A.G.: Stored waveform inverse Fourier transform (SWIFT) ion excitation in trapped-ion mass spectrometry: theory and applications. Int. J. Mass Spectrom. Ion Processes 157/158, 5鈥?7 (1996)CrossRef
    46.Julian Jr., R.K., Cooks, R.G.: Broad-band excitation in the quadrupole ion trap mass spectrometer using shaped pulses created with the inverse Fourier transform. Anal. Chem. 65, 1827鈥?833 (1993)CrossRef
    47.Budzikiewicz, H., Ockels, W.: Mass spectrometric fragmentation reactions. VIII. Characteristic fragments of 5-unsaturated 3-hydroxysteroids. Tetrahedron 32, 143鈥?46 (1976)CrossRef
    48.Rossmann, B., Thurner, K., Luf, W.: MS-MS fragmentation patterns of cholesterol oxidation products. Monatsh. Chem. 138, 437鈥?44 (2007)CrossRef
    49.Lembcke, J., Ceglarek, U., Fiedler, G.M., Baumann, S., Leichtle, A., Thiery, J.: Rapid quantification of free and esterified phytosterols in human serum using APPI-LC-MS/MS. J. Lipid Res. 46, 21鈥?6 (2005)CrossRef
    50.Ronsein, G.E., Prado, F.M., Mansano, F.V., Oliveira, M.C.B., Medeiros, M.H.G., Miyamoto, S., Di Mascio, P.: Detection and characterization of cholesterol-oxidized products using HPLC coupled to dopant assisted atmospheric pressure photoionization tandem mass spectrometry. Anal. Chem. 82, 7293鈥?301 (2010)CrossRef
    51.Available at: http://鈥媤ww.鈥媠igmaaldrich.鈥媍om/鈥媍ontent/鈥媎am/鈥媠igma-aldrich/鈥媎ocs/鈥婼igma/鈥婸roduct_鈥婭nformation_鈥婼heet/鈥媍8667pis.鈥媝df . Accessed 12 Jul 2015
    52.Stadtman, T.C.: Preparation and assay of cholesterol and ergosterol. Methods Enzymol. 3, 392鈥?94 (1957)
    53.Marotta, E., Seraglia, R., Fabris, F., Traldi, P.: Atmospheric pressure photoionization mechanisms 1. The case of acetonitrile. Int. J. Mass Spectrom. 228, 841鈥?49 (2003)CrossRef
    54.Delsuc, M.A., Lallemand, J.Y.: Improvement of dynamic range in NMR by oversampling. J. Magn. Reson. 69, 504鈥?07 (1986)
    55.Delsuc, M.-A., Tramesel, D.: Application of maximum-entropy processing to NMR multidimensional data sets: partial sampling case. C. R. Chim. 9, 364鈥?73 (2006)CrossRef
    56.Wei, J., Li, H., Barrow, M.P., O'Connor, P.B.: Structural characterization of chlorophyll-a by high resolution tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 24, 753鈥?60 (2013)CrossRef
    57.Mosely, J.A., Smith, M.J.P., Prakash, A.S., Sims, M., Bristow, A.W.T.: Electron-induced dissociation of singly charged organic cations as a tool for structural characterization of pharmaceutical type molecules. Anal. Chem. 83, 4068鈥?075 (2011)CrossRef
  • 作者单位:Maria A. van Agthoven (1)
    Mark P. Barrow (1)
    Lionel Chiron (2)
    Marie-Aude Coutouly (2)
    David Kilgour (3)
    Christopher A. Wootton (1)
    Juan Wei (1)
    Andrew Soulby (1)
    Marc-Andr茅 Delsuc (2) (4)
    Christian Rolando (5)
    Peter B. O鈥機onnor (1)

    1. Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
    2. NMRTEC, Bld. S茅bastien Brandt, Bioparc - Bat. B, 67400, Illkirch-Graffenstaden, France
    3. School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
    4. Institut de G茅n茅tique et de Biologie Mol茅culaire et Cellulaire, INSERM, U596; CNRS, UMR7104, Universit茅 de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden, France
    5. Miniaturisation pour la Synth猫se, l鈥橝nalyse & la Prot茅omique (MSAP), USR CNRS 3290, and Prot茅omique, Modifications Post-traductionnelles et Glycobiologie, IFR 147 and Institut Eug猫ne-Michel Chevreul, FR CNRS 2638, Universit茅 de Lille 1 Sciences et Technologies, 59655, Villeneuve d鈥橝scq Cedex, France
  • 刊物主题:Analytical Chemistry; Biotechnology; Organic Chemistry; Proteomics; Bioinformatics;
  • 出版者:Springer US
  • ISSN:1879-1123
文摘
Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700