The linear plastid chromosomes of maize: terminal sequences, structures, and implications for DNA replication
详细信息    查看全文
  • 作者:Delene J. Oldenburg ; Arnold J. Bendich
  • 关键词:GC skew ; Herpes simplex virus ; Chloroplast DNA ; Recombination ; dependent replication ; Telomeres
  • 刊名:Current Genetics
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:62
  • 期:2
  • 页码:431-442
  • 全文大小:1,201 KB
  • 参考文献:Aslani A, Simonsson S, Elias P (2000) A novel conformation of the herpes simplex virus origin of DNA replication recognized by the origin binding protein. J Biol Chem 275:5880–5887CrossRef PubMed
    Belanger AS, Brouard JS, Charlebois P, Otis C, Lemieux C, Turmel M (2006) Distinctive architecture of the chloroplast genome in the chlorophycean green alga Stigeoclonium helveticum. Mol Genet Genomics 276:464–477CrossRef PubMed
    Bendich AJ (1996) Structural analysis of mitochondrial DNA molecules from fungi and plants using moving pictures and pulsed-field gel electrophoresis. J Mol Biol 255:564–588CrossRef PubMed
    Bendich AJ (2004) Circular chloroplast chromosomes: the grand illusion. Plant Cell 16:1661–1666CrossRef PubMed PubMedCentral
    Bendich AJ (2007) The size and form of chromosomes are constant in the nucleus, but highly variable in bacteria, mitochondria and chloroplasts. Bioessays 29:474–483CrossRef PubMed
    Bendich AJ, Oldenburg DJ (2013) Plastid transformation using linear DNA vectors. I. B. World Intellectual Property Organization, USA, pp 1–59
    Bendich AJ, Smith SB (1990) Moving pictures and pulsed-field gel electrophoresis show linear DNA molecules from chloroplasts and mitochondria. Curr Genet 17:421–425CrossRef
    Bochman ML, Paeschke K, Zakian VA (2012) DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet 13:770–780CrossRef PubMed PubMedCentral
    Boulikas T (1996) Common structural features of replication origins in all life forms. J Cell Biochem 60:297–316CrossRef PubMed
    Brouard JS, Otis C, Lemieux C, Turmel M (2011) The chloroplast genome of the green alga Schizomeris leibleinii (Chlorophyceae) provides evidence for bidirectional DNA replication from a single origin in the chaetophorales. Genome Biol Evol 3:505–515CrossRef PubMed PubMedCentral
    Chaconas G, Kobryn K (2010) Structure, function, and evolution of linear replicons in Borrelia. Annu Rev Microbiol 64:185–202CrossRef PubMed
    Clarke JL, Daniell H, Nugent JM (2011) Chloroplast biotechnology, genomics and evolution: current status, challenges and future directions. Plant Mol Biol 76:207–209CrossRef PubMed PubMedCentral
    Deng X-W, Wing RA, Gruissem W (1989) The chloroplast genome exists in multimeric forms. Proc Natl Acad Sci U S A 86:4156–4160CrossRef PubMed PubMedCentral
    Deng SK, Chen H, Symington LS (2015) Replication protein A prevents promiscuous annealing between short sequence homologies: implications for genome integrity. Bioessays 37:305–313CrossRef PubMed PubMedCentral
    Gerhold JM, Sedman T, Visacka K, Slezakova J, Tomaska L, Nosek J, Sedman J (2014) Replication intermediates of the linear mitochondrial DNA of Candida parapsilosis suggest a common recombination based mechanism for yeast mitochondria. J Biol Chem 289:22659–22670CrossRef PubMed PubMedCentral
    Grigoriev A (1998) Analyzing genomes with cumulative skew diagrams. Nucleic Acids Res 26:2286–2290CrossRef PubMed PubMedCentral
    Hanson MR, Gray BN, Ahner BA (2013) Chloroplast transformation for engineering of photosynthesis. J Exp Bot 64:731–742CrossRef PubMed
    Heinhorst S, Cannon GC (1993) DNA replication in chloroplasts. J Cell Sci 104:1–9
    Kikin O, D’Antonio L, Bagga PS (2006) QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucl Acids Res 34(suppl 2):W676–W682CrossRef PubMed PubMedCentral
    Kolodner RD, Tewari KK (1975) Chloroplast DNA from higher plants replicates by both the Cairns and the rolling circle mechanism. Nature 256:708–711CrossRef PubMed
    Kunnimalaiyaan M, Nielsen BL (1997) Chloroplast DNA replication: mechanism, enzymes and replication origins. J Plant Biochem Biotechnol 6:1–7CrossRef
    Lassen MG, Kochhar S, Nielsen BL (2011) Identification of a soybean chloroplast DNA replication origin-binding protein. Plant Mol Biol 76:463–471CrossRef PubMed
    Lilly JW, Havey MJ, Jackson SA, Jiang J (2001) Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants. Plant Cell 13:245–254CrossRef PubMed PubMedCentral
    Maier RM, Neckerman K, Igloi GL, Kössel H (1995) Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251:614–628CrossRef PubMed
    Majeran W, Friso G, Asakura Y, Qu X, Huang M, Ponnala L, Watkins KP, Barkan A, van Wijk KJ (2012) Nucleoid-enriched proteomes in developing plastids and chloroplasts from maize leaves: a new conceptual framework for nucleoid functions. Plant Physiol 158:156–189CrossRef PubMed PubMedCentral
    Maliga P, Bock R (2011) Plastid biotechnology: food, fuel, and medicine for the 21st century. Plant Physiol 155:1501–1510CrossRef PubMed PubMedCentral
    Marechal A, Brisson N (2010) Recombination and the maintenance of plant organelle genome stability. New Phytol 186:299–317CrossRef PubMed
    Moriyama T, Sato N (2014) Enzymes involved in organellar DNA replication in photosynthetic eukaryotes. Front Plant Sci 5:480CrossRef PubMed PubMedCentral
    Morton BR (1999) Strand asymmetry and codon usage bias in the chloroplast genome of Euglena gracilis. Proc Natl Acad Sci U S A 96:5123–5128CrossRef PubMed PubMedCentral
    Muylaert I, Tang KW, Elias P (2011) Replication and recombination of herpes simplex virus DNA. J Biol Chem 286:15619–15624CrossRef PubMed PubMedCentral
    Nosek J, Kosa P, Tomaska L (2006) On the origin of telomeres: a glimpse at the pre-telomerase world. Bioessays 28:182–190CrossRef PubMed
    Oldenburg DJ, Bendich AJ (2001) Mitochondrial DNA from the liverwort Marchantia polymorpha: circularly permuted linear molecules, head-to-tail concatemers, and a 5′ protein. J Mol Biol 310:549–562CrossRef PubMed
    Oldenburg DJ, Bendich AJ (2004a) Most chloroplast DNA of maize seedlings in linear molecules with defined ends and branched forms. J Mol Biol 335:953–970CrossRef PubMed
    Oldenburg DJ, Bendich AJ (2004b) Changes in the structure of DNA molecules and the amount of DNA per plastid during chloroplast development in maize. J Mol Biol 344:1311–1330CrossRef PubMed
    Oldenburg DJ, Bendich AJ (2009) Chloroplasts. In: Kriz AL, Larkins BA (eds) Molecular Genetic Approaches to Maize Improvement Biotechnology in agriculture and forestry, vol 63. Springer, Berlin, Heidelberg, pp 325–343
    Oldenburg DJ, Bendich AJ (2015) DNA maintenance in plastids and mitochondria of plants. Front Plant Sci 6:883. doi:10.​3389/​fpls.​2015.​00883 CrossRef PubMed PubMedCentral
    Oldenburg DJ, Rowan BA, Zhao L, Walcher CL, Schleh M, Bendich AJ (2006) Loss or retention of chloroplast DNA in maize seedlings is affected by both light and genotype. Planta 225:41–55CrossRef PubMed
    Oldenburg DJ, Rowan BA, Kumar RA, Bendich AJ (2014) On the fate of plastid DNA molecules during leaf development: response to the Golczyk et al. Commentary. Plant Cell 26:855–861CrossRef PubMed PubMedCentral
    Pearson CE, Zorbas H, Price GB, Zannis-Hadjopoulos M (1996) Inverted repeats, stem-loops, and cruciforms: significance for initiation of DNA replication. J Cell Biochem 63:1–22CrossRef PubMed
    Pohjoismaki JL, Goffart S (2011) Of circles, forks and humanity: topological organisation and replication of mammalian mitochondrial DNA. Bioessays 33:290–299CrossRef PubMed
    Ravi V, Khuranan JP, Tyagi AK, Khurnana P (2008) An update on chloroplast genomes. Plant Syst Evol 271:101–122CrossRef
    Rowan BA, Oldenburg DJ, Bendich AJ (2004) The demise of chloroplast DNA in Arabidopsis. Curr Genet 46:176–181CrossRef PubMed
    Rowan BA, Oldenburg DJ, Bendich AJ (2010) RecA maintains the integrity of chloroplast DNA molecules in Arabidopsis. J Exp Bot 61:2575–2588CrossRef PubMed PubMedCentral
    Sakaguchi K, Ishibashi T, Uchiyama Y, Iwabata K (2009) The multi-replication protein A (RPA) system—a new perspective. FEBS J 276:943–963CrossRef PubMed
    Scharff LB, Koop HU (2006) Linear molecules of tobacco ptDNA end at known replication origins and additional loci. Plant Mol Biol 62:611–621CrossRef PubMed
    Scharff LB, Koop HU (2007) Targeted inactivation of the tobacco plastome origins of replication A and B. Plant J 50:782–794CrossRef PubMed
    Sharma S (2011) Non-B DNA secondary structures and their resolution by RecQ helicases. J Nucleic Acids 2011:724215CrossRef PubMed PubMedCentral
    Shaver JM, Oldenburg DJ, Bendich AJ (2006) Changes in chloroplast DNA during development in tobacco, Medicago truncatula, pea, and maize. Planta 224:72–82CrossRef PubMed
    Shaver JM, Oldenburg DJ, Bendich AJ (2008) The structure of chloroplast DNA molecules and the effects of light on the amount of chloroplast DNA during development in Medicago truncatula. Plant Physiol 146:1064–1074CrossRef PubMed PubMedCentral
    Smith DR, Keeling PJ (2013) Gene conversion shapes linear mitochondrial genome architecture. Genome Biol Evol 5:905–912CrossRef PubMed PubMedCentral
    Suzuki JY, Sriraman P, Svab Z, Maliga P (2003) Unique architecture of the plastid ribosomal RNA operon promoter recognized by the multisubunit RNA polymerase in tobacco and other higher plants. Plant Cell 15:195–205CrossRef PubMed PubMedCentral
    Watson JD (1972) Origin of concatemeric T7 DNA. Nat New Biol 239:197–201CrossRef PubMed
    Weller SK, Coen DM (2012) Herpes simplex viruses: mechanisms of DNA replication. Cold Spring Harb Perspect Biol 4:a013011CrossRef PubMed PubMedCentral
    Weller SK, Sawitzke JA (2014) Recombination promoted by DNA viruses: phage lambda to herpes simplex virus. Annu Rev Microbiol 68:237–258CrossRef PubMed PubMedCentral
    Xia X (2012) DNA replication and strand asymmetry in prokaryotic and mitochondrial genomes. Curr Genomics 13:16–27CrossRef PubMed PubMedCentral
    Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415CrossRef PubMed PubMedCentral
  • 作者单位:Delene J. Oldenburg (1)
    Arnold J. Bendich (1)

    1. Department of Biology, University of Washington, Box 355325, Seattle, WA, 98195-5325, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbial Genetics and Genomics
    Microbiology
    Biochemistry
    Cell Biology
    Plant Sciences
    Proteomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0983
文摘
The structure of a chromosomal DNA molecule may influence the way in which it is replicated and inherited. For decades plastid DNA (ptDNA) was believed to be circular, with breakage invoked to explain linear forms found upon extraction from the cell. Recent evidence indicates that ptDNA in vivo consists of linear molecules with discrete termini, although these ends were not characterized. We report the sequences of two terminal regions, End1 and End2, for maize (Zea mays L.) ptDNA. We describe structural features of these terminal regions and similarities found in other plant ptDNAs. The terminal sequences are within inverted repeat regions (leading to four genomic isomers) and adjacent to origins of replication. Conceptually, stem-loop structures may be formed following melting of the double-stranded DNA ends. Exonuclease digestion indicates that the ends in maize are unobstructed, but tobacco (Nicotiana tabacum L.) ends may have a 5′-protein. If the terminal structure of ptDNA molecules influences the retention of ptDNA, the unprotected molecular ends in mature leaves of maize may be more susceptible to degradation in vivo than the protected ends in tobacco. The terminal sequences and cumulative GC skew profiles are nearly identical for maize, wheat (Triticum aestivum L.) and rice (Oryza sativa L.), with less similarity among other plants. The linear structure is now confirmed for maize ptDNA and inferred for other plants and suggests a virus-like recombination-dependent replication mechanism for ptDNA. Plastid transformation vectors containing the terminal sequences may increase the chances of success in generating transplastomic cereals.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700