The carboxyl-terminal tail of the stalk of Arabidopsis NACK1/HINKEL kinesin is required for its localization to the cell plate formation site
详细信息    查看全文
  • 作者:Michiko Sasabe (1) (2)
    Nanako Ishibashi (1)
    Tsuyoshi Haruta (1)
    Aki Minami (1)
    Daisuke Kurihara (1) (3)
    Tetsuya Higashiyama (1) (3) (4)
    Ryuichi Nishihama (5)
    Masaki Ito (6)
    Yasunori Machida (1)

    1. Division of Biological Science
    ; Graduate School of Science ; Nagoya University ; Chikusa-ku ; Nagoya ; 464-8602 ; Japan
    2. Department of Biology
    ; Faculty of Agriculture and Life Science ; Hirosaki University ; 3 Bunkyo-cho ; Hirosaki ; 036-8561 ; Japan
    3. JST ERATO Higashiyama Live-Holonics Project
    ; Nagoya University ; Chikusa-ku ; Nagoya ; 464-8602 ; Japan
    4. Institute of Transformative Bio-Molecules (WPI-ITbM)
    ; Nagoya University ; Chikusa-ku ; Nagoya ; 464-8602 ; Japan
    5. Graduate School of Biostudies
    ; Kyoto University ; Kitashirakawa-oiwake-cho ; Sakyo-ku ; Kyoto ; 606-8502 ; Japan
    6. Graduate School of Bioagricultural Sciences
    ; Nagoya University ; Chikusa-ku ; Nagoya ; 464-8601 ; Japan
  • 关键词:Arabidopsis ; Cytokinesis ; Cell plates ; Kinesin ; Microtubules
  • 刊名:Journal of Plant Research
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:128
  • 期:2
  • 页码:327-336
  • 全文大小:1,039 KB
  • 参考文献:1. An, G (1985) High efficiency transformation of cultured tobacco cells. Plant Physiol 79: pp. 568-570 CrossRef
    2. Araki, S, Ito, M, Soyano, T, Nishihama, R, Machida, Y (2004) Mitotic cyclins stimulate the activity of c-Myb-like factors for transactivation of G2/M phase-specific genes in tobacco. J Biol Chem 279: pp. 32979-32988 CrossRef
    3. Blasius, TL, Cai, D, Jih, GT, Toret, CP, Verhey, KJ (2007) Two binding partners cooperate to activate the molecular motor kinesin-1. J Cell Biol 176: pp. 11-17 CrossRef
    4. Chow, CM, Neto, H, Foucart, C, Moore, I (2008) Rab-A2 and Rab-A3 GTPases define a trans-golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate. Plant Cell 20: pp. 101-123 CrossRef
    5. Clough, SJ, Bent, AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: pp. 735-743 CrossRef
    6. Fendrych, M, Synek, L, Pecenkov谩, T, Toupalov谩, H, Cole, R, Drdov谩, E, Nebes谩rov谩, J, Sedinov谩, M, H谩la, M, Fowler, JE, Z谩rsky, V (2010) The Arabidopsis exocyst complex is involved in cytokinesis and cell plate maturation. Plant Cell 22: pp. 3053-3065 CrossRef
    7. Hammond, JW, Blasius, TL, Soppina, V, Cai, D, Verhey, KJ (2010) Autoinhibition of the kinesin-2 motor KIF17 via dual intramolecular mechanisms. J Cell Biol 189: pp. 1013-1025 CrossRef
    8. Horiuchi, D, Collins, CA, Bhat, P, Barkus, RV, Diantonio, A, Saxton, WM (2007) Control of a kinesin-cargo linkage mechanism by JNK pathway kinases. Curr Biol 17: pp. 1313-1317 CrossRef
    9. Ishikawa, M, Soyano, T, Nishihama, R, Machida, Y (2002) The NPK1 mitogen-activated protein kinase kinase kinase contains a functional nuclear localization signal at the binding site for the NACK1 kinesin-like protein. Plant J 32: pp. 789-798 CrossRef
    10. Ishikawa, T, Machida, C, Yoshioka, Y, Kitano, H, Machida, Y (2003) The GLOBULAR ARREST1 gene, which is involved in the biosynthesis of folates, is essential for embryogenesis in Arabidopsis thaliana. Plant J 33: pp. 235-244 CrossRef
    11. Ito, M, Araki, S, Matsunaga, S, Itoh, T, Nishihama, R, Machida, Y, Doonan, JH, Watanabe, A (2001) G2/M-phase-specific transcription during the plant cell cycle is mediated by c-Myb-like transcription factors. Plant Cell 13: pp. 1891-1905 CrossRef
    12. J眉rgens, G (2005) Plant cytokinesis: fission by fusion. Trends Cell Biol 15: pp. 277-283 CrossRef
    13. Kaan, HY, Hackney, DD, Kozielski, F (2011) The structure of the kinesin-1 motor-tail complex reveals the mechanism of autoinhibition. Science 333: pp. 883-885 CrossRef
    14. Kosetsu, K, Matsunaga, S, Nakagami, H, Colcombet, J, Sasabe, M, Soyano, T, Takahashi, Y, Hirt, H, Machida, Y (2010) The MAP kinase MPK4 is required for cytokinesis in Arabidopsis thaliana. Plant Cell 22: pp. 3778-3790 CrossRef
    15. Krupnova, T, Sasabe, M, Ghebreghiorghis, L, Gruber, CW, Hamada, T, Dehmel, V, Strompen, G, Stierhof, YD, Lukowitz, W, Kemmerling, B, Machida, Y, Hashimoto, T, Mayer, U, J眉rgens, G (2009) Microtubule-associated kinase-like protein RUNKEL needed for cell plate expansion in Arabidopsis cytokinesis. Curr Biol 19: pp. 518-523 CrossRef
    16. Krupnova, T, Stierhof, YD, Hiller, U, Strompen, G, M眉ller, S (2013) The microtubule-associated kinase-like protein RUNKEL functions in somatic and syncytial cytokinesis. Plant J 74: pp. 781-791 CrossRef
    17. Lauber, MH, Waizenegger, I, Steinmann, T, Schwarz, H, Mayer, U, Hwang, I, Lukowitz, W, J眉rgens, G (1997) The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin. J Cell Biol 139: pp. 1485-1493 CrossRef
    18. Lupas, A, Dyke, M, Stock, J (1991) Predicting coiled coils from protein sequences. Science 252: pp. 1162-1164 CrossRef
    19. McMichael, CM, Bednarek, SY (2013) Cytoskeletal and membrane dynamics during higher plant cytokinesis. New Phytol 197: pp. 1039-1057 CrossRef
    20. Miki, T, Naito, H, Nishina, M, Goshima, G (2014) Endogenous localizome identifies 43 mitotic kinesins in a plant cell. Proc Natl Acad Sci USA 111: pp. E1053-E1061 CrossRef
    21. M眉ller, S, Smertenko, A, Wagner, V, Heinrich, M, Hussey, PJ, Hauser, MT (2004) The plant microtubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragmoplast function. Curr Biol 14: pp. 412-417 CrossRef
    22. M眉ller, S, Wright, AJ, Smith, LG (2009) Division plane control in plants: new players in the band. Trends Cell Biol 19: pp. 180-188 CrossRef
    23. Murata, T, Sano, T, Sasabe, M, Nonaka, S, Higashiyama, T, Hasezawa, S, Machida, Y, Hasebe, M (2013) Mechanism of microtubule array expansion in the cytokinetic phragmoplast. Nat Commun 4: pp. 1967
    24. Nakagawa, T, Suzuki, T, Murata, S, Nakamura, S, Hino, T, Maeo, K, Tabata, R, Kawai, T, Tanaka, K, Niwa, Y, Watanabe, Y, Nakamura, K, Kimura, T, Ishiguro, S (2007) Improved gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci Biotechnol Biochem 71: pp. 2095-2100 CrossRef
    25. Nakaoka, Y, Miki, T, Fujioka, R, Uehara, R, Tomioka, A, Obuse, C, Kubo, M, Hiwatashi, Y, Goshima, G (2012) An inducible RNA interference system in Physcomitrella patens reveals a dominant role of augmin in phragmoplast microtubule generation. Plant Cell 24: pp. 1478-1493 CrossRef
    26. Nishihama, R, Machida, Y (2001) Expansion of the phragmoplast during plant cytokinesis: a MAPK pathway may MAP it out. Curr Opin Plant Biol 4: pp. 507-512 CrossRef
    27. Nishihama, R, Ishikawa, M, Araki, S, Soyano, T, Asada, T, Machida, Y (2001) The NPK1 mitogen-activated protein kinase kinase kinase is a regulator of cell-plate formation in plant cytokinesis. Genes Dev 15: pp. 352-363 CrossRef
    28. Nishihama, R, Soyano, T, Ishikawa, M, Araki, S, Tanaka, H, Asada, T, Irie, K, Ito, M, Terada, M, Banno, H, Yamazaki, Y, Machida, Y (2002) Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell 109: pp. 87-99 CrossRef
    29. Normand, G, King, RW (2010) Understanding cytokinesis failure. Adv Exp Med Biol 676: pp. 27-55 CrossRef
    30. Otegui, MS, Verbrugghe, KJ, Skop, AR (2005) Midbodies and phragmoplasts: analogous structures involved in cytokinesis. Trends Cell Biol 15: pp. 404-413 CrossRef
    31. Peterman, TK, Ohol, YM, McReynolds, LJ, Luna, EJ (2004) Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides. Plant Physiol 136: pp. 3080-3094 CrossRef
    32. Sablin, EP (2000) Kinesins and microtubules: their structures and motor mechanisms. Curr Opin Cell Biol 12: pp. 35-41 CrossRef
    33. Sasabe, M, Soyano, T, Takahashi, Y, Sonobe, S, Igarashi, H, Itoh, TJ, Hidaka, M, Machida, Y (2006) Phosphorylation of NtMAP65-1 by a MAP kinase down-regulates its activity of microtubule bundling and stimulates progression of cytokinesis of tobacco cells. Genes Dev 20: pp. 1004-1014 CrossRef
    34. Sasabe, M, Boudolf, V, Veylder, L, Inz茅, D, Genschik, P, Machida, Y (2011) Phosphorylation of a mitotic kinesin-like protein and a MAPKKK by cyclin-dependent kinases (CDKs) is involved in the transition to cytokinesis in plants. Proc Natl Acad Sci USA 108: pp. 17844-17849 CrossRef
    35. Sasabe, M, Kosetsu, K, Hidaka, M, Murase, A, Machida, Y (2011) Arabidopsis thaliana MAP65-1 and MAP65-2 function redundantly with MAP65-3/PLEIADE in cytokinesis downstream of MPK4. Plant Signal Behav 6: pp. 743-747 CrossRef
    36. Sazuka, T, Aichi, I, Kawai, T, Matsuo, N, Kitano, H, Matsuoka, M (2005) The rice mutant dwarf bamboo shoot 1: a leaky mutant of the NACK-type kinesin-like gene can initiate organ primordia but not organ development. Plant Cell Physiol 46: pp. 1934-1943 CrossRef
    37. Seeger, MA, Rice, SE (2010) Microtubule-associated protein-like binding of the kinesin-1 tail to microtubules. J Biol Chem 285: pp. 8155-8162 CrossRef
    38. Smertenko, AP, Piette, B, Hussey, PJ (2011) The origin of phragmoplast asymmetry. Curr Biol 21: pp. 1924-1930 CrossRef
    39. Soyano, T, Nishihama, R, Morikiyo, K, Ishikawa, M, Machida, Y (2003) NQK1/NtMEK1 is a MAPKK that acts in the NPK1 MAPKKK-mediated MAPK cascade and is required for plant cytokinesis. Genes Dev 17: pp. 1055-1067 CrossRef
    40. Strompen, G, Kasmi, F, Richter, S, Lukowitz, W, Assaad, FF, J眉rgens, G, Mayer, U (2002) The Arabidopsis HINKEL gene encodes a kinesin-related protein involved in cytokinesis and is expressed in a cell cycle-dependent manner. Curr Biol 12: pp. 153-158 CrossRef
    41. Takahashi, Y, Soyano, T, Kosetsu, K, Sasabe, M, Machida, Y (2010) HINKEL kinesin, ANP MAPKKKs and MKK6/ANQ MAPKK, which phosphorylates and activates MPK4 MAPK, constitute a pathway that is required for cytokinesis in Arabidopsis thaliana. Plant Cell Physiol 51: pp. 1766-1776 CrossRef
    42. Tanaka, H, Ishikawa, M, Kitamura, S, Takahashi, Y, Soyano, T, Machida, C, Machida, Y (2004) The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes, which encode functionally redundant kinesins, are essential for cytokinesis in Arabidopsis. Genes Cells 9: pp. 1199-1211 CrossRef
    43. Twell, D, Park, SK, Hawkins, TJ, Schubert, D, Schmidt, R, Smertenko, A, Hussey, PJ (2002) MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nat Cell Biol 4: pp. 711-714 CrossRef
    44. Damme, D, Geelen, D (2008) Demarcation of the cortical division zone in dividing plant cells. Cell Biol Int 32: pp. 178-187 CrossRef
    45. Verhey, KJ, Hammond, JW (2009) Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol 10: pp. 765-777 CrossRef
    46. Verhey, KJ, Meyer, D, Deehan, R, Blenis, J, Schnapp, BJ, Rapoport, TA, Margolis, B (2001) Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J Cell Biol 152: pp. 959-970 CrossRef
    47. Verhey, KJ, Kaul, N, Soppina, V (2011) Kinesin assembly and movement in cells. Annu Rev Biophys 40: pp. 267-288 biophys-042910-155310" target="_blank" title="It opens in new window">CrossRef
    48. Waizenegger, I, Lukowitz, W, Assaad, F, Schwarz, H, J眉rgens, G, Mayer, U (2000) The Arabidopsis KNOLLE and KEULE genes interact to promote vesicle fusion during cytokinesis. Curr Biol 10: pp. 1371-1374 CrossRef
    49. Woollard, AA, Moore, I (2008) The functions of Rab GTPases in plant membrane traffic. Curr Opin Plant Biol 11: pp. 610-619 CrossRef
    50. Yasuhara, H, Sonobe, S, Shibaoka, H (1993) Effects of taxol on the development of the cell plate and of the phragmoplast in tobacco BY-2 cells. Plant Cell Physiol 34: pp. 21-29
    51. Zuo, J, Niu, QW, Chua, NH (2000) Technical advance: an estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24: pp. 265-273 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Plant Ecology
    Plant Physiology
    Plant Biochemistry
  • 出版者:Springer Japan
  • ISSN:1618-0860
文摘
Plant cytokinesis is achieved by formation of cell plates in the phragmoplast, a plant-specific cytokinetic apparatus, which consists of microtubules (MTs) and microfilaments. During cytokinesis, the cell plate is expanded centrifugally outward from the inside of cells in a process that is supported by dynamic turnover of MTs. M-phase-specific kinesin NACK1, which comprises the motor domain at the amino-terminal half to move on MT bundles and the stalk region in the carboxyl-terminal half, is a key player in the process of MT turnover. That is, the specific region in the stalk binds the MAP kinase kinase kinase to activate the whole MAP kinase cascade, which stimulates depolymerization of MTs for the MT turnover. The stalk is also responsible for recruiting the activated kinase cascade to the mid-zone of the phragmoplast, which corresponds to the cell-plate formation site. It should be crucial to uncover roles of the NACK1 kinesin stalk as well as the motor domain in the formation of cell plates in order to understand the mechanisms of cell plate formation. Using dissected Arabidopsis NACK1 (AtNACK1/HINKEL) molecules and AtNACK1-fused GFP, we showed that the C-terminal tail of the stalk in addition to the motor domain is critical for its proper localization to the site of cell plate formation in the phragmoplast, probably by affecting its motility activity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700