Phosphomannose-isomerase as a selectable marker for transgenic plum (Prunus domestica L.)
详细信息    查看全文
  • 作者:Hong Wang (1)
    César Petri (2)
    Lorenzo Burgos (2)
    Nuria Alburquerque (2)
  • 关键词:Biotechnology ; Breeding ; Genetic engineering ; Fruit trees ; Mannose
  • 刊名:Plant Cell, Tissue and Organ Culture
  • 出版年:2013
  • 出版时间:May 2013
  • 年:2013
  • 卷:113
  • 期:2
  • 页码:189-197
  • 全文大小:408KB
  • 参考文献:1. Ballester A, Cervera M, Pe?a L (2007) Efficient production of transgenic / Citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination. Plant Cell Rep 26:39-5 CrossRef
    2. Ballester A, Cervera M, Pe?a L (2008) Evaluation of selection strategies alternative to nptII in genetic transformation of citrus. Plant Cell Rep 27:1005-015 CrossRef
    3. Ballester A, Cervera M, Pe?a L (2010) Selectable marker-free transgenic orange plants recovered under non-selective conditions and through PCR analysis of all regenerants. Plant Cell Tissue Org Cult 102:329-36 CrossRef
    4. Boscariol RL, Almeida WAB, Derbyshire MTVC, Mourao-Filho FAA, Mendes BMJ (2003) The use of the PMI/mannose selection system to recover transgenic sweet orange plants ( / Citrus sinensis L. Osbeck). Plant Cell Rep 22:122-28 CrossRef
    5. Briza J, Pavingerova D, Prikrylova P, Gazdova J, Vlasak J, Niedermeierova H (2008) Use of phosphomannose isomerase-based selection system for Agrobacterium-mediated transformation of tomato and potato. Biol Plantarum 52:453-61 CrossRef
    6. Darbani B, Eimanifar A, Stewart CN, Camargo WN (2007) Methods to produce marker-free transgenic plants. Biotechnol J 2:83-0 CrossRef
    7. Degenhardt J, Poppe A, Montag J, Szankowski I (2006) The use of the phosphomannose-isomerase/mannose selection system to recover transgenic apple plants. Plant Cell Rep 25:1149-156 CrossRef
    8. Dolgov SV, Firsov AP (1999) Regeneration and / Agrobacterium transformation of sour cherry leaf discs. Acta Hort 484:577-79
    9. Doyle JJ, Doyle JL (1990) Isolation of DNA from fresh tissue. Focus 1990:13-5
    10. Driver JA, Kuniyuki AH (1984) In vitro propagation of Paradox walnut rootstock. HortScience 19:507-09
    11. Druart P, Delporte F, Brazda M, Ugarte-Ballon C, da Camara MA, da Camara Laimer, Machado M, Jacquemin J, Watillon B (1998) Genetic transformation of cherry trees. Acta Hort 468:71-6
    12. Ebinuma H, Komamine A (2001) MAT (Multi-Auto-Transformation) vector system. The oncogenes of / Agrobacterium as positive markers for regeneration and selection of marker-free transgenic plants. In Vitro Cell Dev Biol Plant 37:103-13 CrossRef
    13. Gonzalez-Padilla IM, Webb K, Scorza R (2003) Early antibiotic selection and efficient rooting and acclimatization improve the production of transgenic plum plants ( / Prunus domestica L.). Plant Cell Rep 22:38-5 CrossRef
    14. He Z, Fu Y, Si H, Hu G, Zhang S, Yu Y, Sun Z (2004) Phosphomannose-isomerase ( / pmi) gene as a selectable marker for rice transformation via / Agrobacterium. Plant Sci 166:17-2 CrossRef
    15. James DJ, Uratsu SL, Cheng J, Negri P, Viss P, Dandekar AM (1993) Acetosyringone and osmoprotectans like betaine or proline synergistically enhance / Agrobacterium-mediated transformation of apple. Plant Cell Rep 12:559-63 CrossRef
    16. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387-05 CrossRef
    17. Joersbo M, Donaldson I, Kreiberg J, Petersen SG, Brunstedt J, Okkels FT (1998) Analysis of mannose selection used for transformation of sugar beet. Mol Breed 4:111-17 CrossRef
    18. Joersbo M, Mikkelsen JD, Brunstedt J (2000) Relationship between promoter strength and transformation frequencies using mannose selection for the production of transgenic sugar beet. Mol Breed 6:207-13 CrossRef
    19. López-Noguera S, Petri C, Burgos L (2009) Combining a regeneration-promoting gene and site-specific recombination allows a more efficient apricot transformation and the elimination of marker genes. Plant Cell Rep 28:1781-790 CrossRef
    20. Lucca P, Ye X, Potrykus I (2001) Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol Breed 7:43-9 CrossRef
    21. Malnoy M, Boresjza-Wysocka EE, Norelli JL, Flaishman MA, Gidoni D, Aldwinckle HS (2010) Genetic transformation of apple (Malus x domestica) without use of a selectable marker gene. Tree Genet Genome 6:423-33 CrossRef
    22. Manimaran P, Ramkumar G, Sakthivel K, Sundaram RM, Madhav MS, Balachandran SM (2011) Suitability of non-lethal marker and marker-free systems for development of transgenic crop plants: present status and future prospects. Biotechnol Adv 29:703-14 CrossRef
    23. Mante S, Morgens PH, Scorza R, Cordts JM, Callahan AM (1991) / Agrobacterium-mediated transformation of plum ( / Prunus domestica L) hypocotyl slices and regeneration of transgenic plants. Biotechnology 9:853-57 CrossRef
    24. Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193-32 CrossRef
    25. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473-97 CrossRef
    26. Negrotto D, Jolley M, Beer S, Wenck AR, Hansen G (2000) The use of phophomannose-isomerase as a selectable marker to recover transgenic maize plants ( / Zea mays L.) via / Agrobacterium transformation. Plant Cell Rep 19:789-03 CrossRef
    27. Padilla IMG, Burgos L (2010) Aminoglycoside antibiotics: structure, functions and effects on in vitro plant culture and genetic transformation protocols. Plant Cell Rep 29:1203-213 CrossRef
    28. Petri C, Alburquerque N, García-Castillo S, Egea J, Burgos L (2004) Factors affecting gene transfer efficiency to apricot leaves during early / Agrobacterium-mediated transformation steps. J Hort Sci Biotechnol 79:704-12
    29. Petri C, Webb K, Hily JM, Dardick C, Scorza R (2008) High transformation efficiency in plum ( / Prunus domestica L.): a new tool for functional genomics studies in / Prunus spp. Mol Breed 22:581-91 CrossRef
    30. Petri C, Hily JM, Vann C, Dardick C, Scorza R (2011) A high-throughput transformation system allows the regeneration of marker-free plum plants ( / Prunus domestica). Ann Appl Biol 159:302-15 CrossRef
    31. Petri C, López-Noguera S, Wang H, García-Almodovar RC, Alburquerque N, Burgos L (2012) A chemical-inducible / Cre- / LoxP system allows for elimination of selection marker genes in transgenic apricot. Plant Cell Tissue Org Cult 110:337-46 CrossRef
    32. Privalle L (2002) Phosphomannose isomerase, a novel plant selection system. Ann NY Acad Sci 964:129-38 CrossRef
    33. Quoirin M, Lepoivre P (1977) Etude de milieux adaptes aux cultures in vitro de / Prunus. Acta Hort 78:437-42
    34. Ramesh SA, Kaiser BN, Franks T, Collins G, Sedgley M (2006) Improved methods in / Agrobacterium-mediated transformation of almond using positive (mannose/ / pmi) or negative (kanamycin resistance) selection-based protocols. Plant Cell Rep 25:821-28 CrossRef
    35. Reed J, Privalle L, Powell ML, Meghji M, Dawson J, Dunder E, Sutthe J, Wenck A, Launis K, Kramer C (2001) Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell Dev Biol Plant 37:127-32
    36. SAS Institute I (1988) SAS/STAT User’s Guide. Release 6.03. SAS Institute, Inc., Cary
    37. Sigareva M, Spivey R, Willits MG, Kramer CM, Chang YF (2004) An efficient mannose selection protocol for tomato that has no adverse effect on the ploidy level of transgenic plants. Plant Cell Rep 23:236-45 CrossRef
    38. Stoykova P, Stoeva-Popova P (2010) PMI ( / manA) as a nonantibiotic selectable marker gene in plant biotechnology. Plant Cell, Tiss Org Cult 105:141-48 CrossRef
    39. Thiruvengadam M, Hsu WH, Yang CH (2011) Phosphomannose-isomerase as a selectable marker to recover transgenic orchid plants ( / Oncidium Gower Ramsey). Plant Cell Tissue Org Cult 104:239-46 CrossRef
    40. Vanblaere T, Szankowski I, Schaart J, Schouten H, Flachowsky H, Broggini GAL, Gessler C (2011) The development of a cisgenic apple plant. J Biotechnol 154:304-11 CrossRef
    41. Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in / Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245-50 CrossRef
    42. Wallbraun M, Sonntag K, Eisenhauer C, Krzcal G, Wang YP (2009) Phosphomannose-isomerase ( / pmi) gene as a selectable marker for / Agrobacterium-mediated transformation of rapeseed. Plant Cell Tissue Org Cult 99:345-51 CrossRef
    43. Wang AS, Evans RA, Altendorf PR, Hanten JA, Doyle MC, Rosichan JL (2000) A mannose selection system for production of fertile transgenic maize plants from protoplasts. Plant Cell Rep 19:654-60 CrossRef
    44. Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L (2001) Efficient biolistic transformation of maize ( / Zea mays L.) and wheat ( / Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep 20:429-36 CrossRef
    45. Zhang P, Puonti-Kaerlas J (2000) PIG-mediated cassava transformation using positive and negative selection. Plant Cell Rep 19:1041-048 CrossRef
    46. Zhu YJ, Agbayani R, McCafferty H, Albert HH, Moore PH (2005) Effective selection of transgenic papaya plants with the PMI/Man selection system. Plant Cell Rep 24:426-32 CrossRef
    47. Zuo J, Niu QW, Moller SG, Chua NH (2001) Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotechnol 19:157-61 CrossRef
  • 作者单位:Hong Wang (1)
    César Petri (2)
    Lorenzo Burgos (2)
    Nuria Alburquerque (2)

    1. Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, Anning, Lanzhou, 730070, China
    2. CEBAS-CSIC, Departamento de Mejora Vegetal, Grupo de Biotecnología de Frutales, Campus Universitario de Espinardo, 30100, Murcia, Spain
  • ISSN:1573-5044
文摘
A mannose selection system was adapted for Agrobacterium-mediated transformation of plum (Prunus domestica L.) hypocotyl explants and the recovery of transgenic plants. Adventitious regeneration from non-transformed hypocotyl sections was inhibited when 3?mg/l mannose, combined with 10?mg/l sucrose, was added to the medium. Mature seed hypocotyl slices from the cultivar ‘Claudia Verde-were infected with A. tumefaciens AGL1, carrying the pNOVgus vector, and placed onto different selective media with mannose. A low mannose selection (1.5?g/l, regeneration below the inhibitory concentration) applied for 16?weeks led to the regeneration of escapes. However, when mannose at 1.5?g/l or at 3?g/l (the regeneration-inhibiting concentration) was applied for 6?weeks from the beginning of the experiments and, after that, was increased to 5?g/l, several independent transgenic lines were obtained. The transformation events were monitored by detection of the GUS enzymatic activity at different stages of the process. Nevertheless, stable integration of transgenes into the genome of the plum plants was confirmed by PCR and Southern blot analysis. The transformed shoots were rooted on a medium supplemented with 10?g/l sucrose and 4?g/l mannose. The transformation procedure described here, using the pmi/mannose system for selection of transgenic plum plants, represents an alternative for the production of transgenic plum plants under conditions that are safe regarding human health and the environment, and would permit the insertion of more transgene/s in a pre-existing transgenic line.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700