Isopeptidase activity of human transglutaminase 2: disconnection from transamidation and characterization by kinetic parameters
详细信息    查看全文
  • 作者:Róbert Király ; Kiruphagaran Thangaraju ; Zsófia Nagy ; Russell Collighan…
  • 关键词:Human transglutaminase 2 ; Isopeptidase activity ; γ ; Glutamyl ; hydrolase ; Transamidation ; Regulation of activities ; Moonlighting enzyme
  • 刊名:Amino Acids
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:48
  • 期:1
  • 页码:31-40
  • 全文大小:674 KB
  • 参考文献:Adamczyk M, Heil A, Aeschlimann D (2013) Real-time fluorescence assay for monitoring transglutaminase activity. BMG LABTECH’s Application Note 234, Rev. 04/2013
    Chica RA, Gagnon P, Keillor JW, Pelletier JN (2004) Tissue transglutaminase acylation: proposed role of conserved active site Tyr and Trp residues revealed by molecular modeling of peptide substrate binding. Protein Sci 13:979–991PubMed PubMedCentral CrossRef
    Eckert RL, Kaartinen MT, Nurminskaya M, Belkin AM, Colak G, Johnson GV, Mehta K (2014) Transglutaminase regulation of cell function. Physiol Rev 94:383–417PubMed PubMedCentral CrossRef
    Fleckenstein B, Molberg Ø, Qiao SW, Schmid DG, von der Mülbe F, Elgstøen K, Jung G, Sollid LM (2002) Gliadin T cell epitope selection by tissue transglutaminase in celiac disease. Role of enzyme specificity and pH influence on the transamidation versus deamidation process. J Biol Chem 277:34109–34116PubMed CrossRef
    Folk JE, Cole PW, Mullooly JP (1967) Mechanism of action of guinea pig liver transglutaminase. 3. The metal-dependent hydrolysis of p-nitrophenyl acetate; further observations on the role of metal in enzyme activation. J Biol Chem 242:2615–2621PubMed
    Gentile V, Saydak M, Chiocca EA, Akande O, Birckbichler PJ, Lee KN, Stein JP, Davies PJ (1991) Isolation and characterization of cDNA clones to mouse macrophage and human endothelial cell tissue transglutaminases. J Biol Chem 266:478–483PubMed
    Guilluy C, Rolli-Derkinderen M, Tharaux PL, Melino G, Pacaud P, Lorand G (2007) Transglutaminase-dependent RhoA activation and depletion by serotonin in vascular smooth muscle cells. J Biol Chem 282:2918–2928PubMed CrossRef
    Gundemir S, Johnson GV (2009) Intracellular localization and conformational state of transglutaminase 2: implications for cell death. PLoS One 4(7):e6123. doi:10.​1371/​journal.​pone.​0006123 PubMed PubMedCentral CrossRef
    Ichinose A, Aoki N (1982) Reversible cross-linking of alpha 2-plasmin inhibitor to fibrinogen by fibrin-stabilizing factor. Biochim Biophys Acta 706:158–164PubMed CrossRef
    Iismaa SE, Holman S, Wouters MA, Lorand L, Graham RM, Husain A (2003) Evolutionary specialization of a tryptophan indole group for transition-state stabilization by eukaryotic transglutaminases. Proc Natl Acad Sci USA 100:12636–12641PubMed PubMedCentral CrossRef
    Iismaa SE, Mearns BM, Lorand L, Graham RM (2009) Transglutaminases and disease: lessons from genetically engineered mouse models and inherited disorders. Physiol Rev 89:991–1023PubMed CrossRef
    Johnson TS, Fisher M, Haylor JL, Hau Z, Skill NJ, Jones R, Saint R, Coutts I, Vickers ME, El Nahas AM, Griffin M (2007) Transglutaminase inhibition reduces fibrosis and preserves function in experimental chronic kidney disease. J Am Soc Nephrol 18:3078–3088PubMed CrossRef
    Kanchan K, Ergülen E, Király R, Simon-Vecsei Z, Fuxreiter M, Fésüs L (2013) Identification of a specific one amino acid change in recombinant human transglutaminase 2 that regulates its activity and calcium sensitivity. Biochem J 455:261–272PubMed CrossRef
    Keillor JW, Chica RA, Chabot N, Vinci V, Pardin C, Fortin E, Gillet SMFG, Nakano Y, Kaartinen MT, Pelletier JN, Lubell WD (2008) The bioorganic chemistry of transglutaminase: from mechanism to inhibition and engineering. Can J Chem 86:271–276CrossRef
    Keillor JW, Clouthier CM, Apperley KY, Akbar A, Mulani A (2014) Acyl transfer mechanisms of tissue transglutaminase. Bioorg Chem 57:186–197PubMed CrossRef
    Király R, Csosz E, Kurtán T, Antus S, Szigeti K, Simon-Vecsei Z, Korponay-Szabó IR, Keresztessy Z, Fésüs L (2009) Functional significance of five noncanonical Ca2+-binding sites of human transglutaminase 2 characterized by site-directed mutagenesis. FEBS J 276:7083–7096PubMed CrossRef
    Király R, Barta E, Fésüs L (2013) Polymorphism of transglutaminase 2: unusually low frequency of genomic variants with deficient functions. Amino Acids 44:215–225PubMed CrossRef
    Lai TS, Greenberg CS (2013) Histaminylation of fibrinogen by tissue transglutaminase-2 (TGM-2): potential role in modulating inflammation. Amino Acids 45:857–864PubMed CrossRef
    Liu S, Cerione RA, Clardy J (2002) Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc Natl Acad Sci USA 99:2743–2747PubMed PubMedCentral CrossRef
    Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156PubMed CrossRef
    Lorand L, Stern AM, Velasco PT (1998) Novel inhibitors against the transglutaminase-catalysed crosslinking of lens proteins. Exp Eye Res 66:531–536PubMed CrossRef
    Mádi A, Punyiczki M, di Rao M, Piacentini M, Fésüs L (1998) Biochemical characterization and localization of transglutaminase in wild-type and cell-death mutants of the nematode Caenorhabditis elegans. Eur J Biochem 253:583–590PubMed CrossRef
    Martin A, Giuliano A, Collaro D, De Vivo G, Sedia C, Serretiello E, Gentile V (2013) Possible involvement of transglutaminase-catalyzed reactions in the physiopathology of neurodegenerative diseases. Amino Acids 44:111–118PubMed CrossRef
    McEwen DP, Gee KR, Kang HC, Neubig RR (2001) Fluorescent BODIPY-GTP analogs: real-time measurement of nucleotide binding to G proteins. Anal Biochem 291:109–117PubMed CrossRef
    Mimuro J, Kimura S, Aoki N (1986) Release of alpha 2-plasmin inhibitor from plasma fibrin clots by activated coagulation factor XIII. Its effect on fibrinolysis. J Clin Invest 77:1006–1013PubMed PubMedCentral CrossRef
    Murthy SN, Iismaa S, Begg G, Freymann DM, Graham RM, Lorand L (2002) Conserved tryptophan in the core domain of transglutaminase is essential for catalytic activity. Proc Natl Acad Sci USA 99:2738–2742PubMed PubMedCentral CrossRef
    Parameswaran KN, Cheng XF, Chen EC, Velasco PT, Wilson JH, Lorand L (1997) Hydrolysis of gamma:epsilon isopeptides by cytosolic transglutaminases and by coagulation factor XIIIa. J Biol Chem 272:10311–10317PubMed CrossRef
    Paulmann N, Grohmann M, Voigt JP, Bert B, Vowinckel J, Bader M, Skelin M, Jevsek M, Fink H, Rupnik M, Walther DJ (2009) Intracellular serotonin modulates insulin secretion from pancreatic beta-cells by protein serotonylation. PLoS Biol 7(10):e1000229. doi:10.​1371/​journal.​pbio.​1000229 PubMed PubMedCentral CrossRef
    Perez Alea M, Kitamura M, Martin G, Thomas V, Hitomi K, El Alaoui S (2009) Development of an isoenzyme-specific colorimetric assay for tissue transglutaminase 2 cross-linking activity. Anal Biochem 389:150–156PubMed CrossRef
    Pinkas DM, Strop P, Brunger AT, Khosla C (2007) Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol 5(12):e327PubMed PubMedCentral CrossRef
    Qiao SW, Piper J, Haraldsen G, Oynebråten I, Fleckenstein B, Molberg O, Khosla C, Sollid LM (2005) Tissue transglutaminase-mediated formation and cleavage of histamine-gliadin complexes: biological effects and implications for celiac disease. J Immunol 174:1657–1663PubMed CrossRef
    Raczyński G, Snochowski M, Buraczewski S (1975) Metabolism of epsilon-(gamma-l -glutamyl)-l -lysine in the rat. Br J Nutr 34:291–296PubMed
    Ruan Q, Tucholski J, Gundemir S, Johnson Voll GV (2008) The differential effects of R580A mutation on transamidation and GTP binding activity of rat and human type 2 transglutaminase. Int J Clin Exp Med 1:248–259PubMed PubMedCentral
    Shan L, Molberg Ø, Parrot I, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C (2002) Structural basis for gluten intolerance in celiac sprue. Science 297:2275PubMed CrossRef
    Tarcsa E, Fesus L (1990) Determination of epsilon (gamma-glutamyl)lysine crosslink in proteins using phenylisothiocyanate derivatization and high-pressure liquid chromatographic separation. Anal Biochem 186:135–140PubMed CrossRef
    Vowinckel J, Stahlberg S, Paulmann N, Bluemlein K, Grohmann M, Ralser M, Walther DJ (2012) Histaminylation of glutamine residues is a novel posttranslational modification implicated in G-protein signaling. FEBS Lett 586:3819–3824PubMed PubMedCentral CrossRef
    Wang Z, Griffin M (2012) TG2, a novel extracellular protein with multiple functions. Amino Acids 42:939–949PubMed CrossRef
  • 作者单位:Róbert Király (1)
    Kiruphagaran Thangaraju (1)
    Zsófia Nagy (1)
    Russell Collighan (3)
    Zoltán Nemes (1)
    Martin Griffin (3)
    László Fésüs (1) (2)

    1. Department of Biochemistry and Molecular Biology, University of Debrecen, Egyetem tér 1., Debrecen, 4012, Hungary
    3. School of Life and Health Sciences, Aston University, Birmingham, UK
    2. MTA-DE Stem Cell, Apoptosis and Genomics Research Group of Hungarian Academy of Sciences, Faculty of Medicine, University of Debrecen, Egyetem tér 1., Debrecen, 4012, Hungary
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Analytical Chemistry
    Biochemical Engineering
    Life Sciences
    Proteomics
    Neurobiology
  • 出版者:Springer Wien
  • ISSN:1438-2199
文摘
Transglutaminase 2 (TG2) is a multifunctional protein with diverse catalytic activities and biological roles. Its best studied function is the Ca2+-dependent transamidase activity leading to formation of γ-glutamyl-ε-lysine isopeptide crosslinks between proteins and γ-glutamyl-amine derivatives. TG2 has a poorly studied isopeptidase activity cleaving these bonds. We have developed and characterised TG2 mutants which are significantly deficient in transamidase activity while have normal or increased isopeptidase activity (W332F) and vice versa (W278F). The W332F mutation led to significant changes of both the K m and the V max kinetic parameters of the isopeptidase reaction of TG2 while its calcium and GTP sensitivity was similar to the wild-type enzyme. The W278F mutation resulted in six times elevated amine incorporating transamidase activity demonstrating the regulatory significance of W278 and W332 in TG2 and that mutations can change opposed activities located at the same active site. The further application of our results in cellular systems may help to understand TG2-driven physiological and pathological processes better and lead to novel therapeutic approaches where an increased amount of crosslinked proteins correlates with the manifestation of degenerative disorders. Keywords Human transglutaminase 2 Isopeptidase activity γ-Glutamyl-hydrolase Transamidation Regulation of activities Moonlighting enzyme

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700