Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance
详细信息    查看全文
  • 作者:Fumio Matsuda (1) (2) (3)
    Jun Ishii (2)
    Takashi Kondo (2) (4)
    Kengo Ida (5)
    Hironori Tezuka (5)
    Akihiko Kondo (3) (5)
  • 关键词:Isobutanol ; Ehrlich pathway ; Single ; gene deletion ; Transhydrogenase ; like shunt ; Saccharomyces cerevisiae
  • 刊名:Microbial Cell Factories
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:12
  • 期:1
  • 全文大小:430 KB
  • 参考文献:1. Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E: Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. / Appl Microbiol Biotechnol 2010,87(4):1303-315. CrossRef
    2. Connor MR, Liao JC: Microbial production of advanced transportation fuels in non-natural hosts. / Curr Opin Biotechnol 2009,20(3):307-15. CrossRef
    3. Blombach B, Eikmanns BJ: Current knowledge on isobutanol production with Escherichia coli , Bacillus subtilis and Corynebacterium glutamicum . / Bioeng Bugs 2011,2(6):346-50. CrossRef
    4. Atsumi S, Hanai T, Liao JC: Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. / Nature 2008,451(7174):86-9. CrossRef
    5. Atsumi S, Higashide W, Liao JC: Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. / Nat Biotechnol 2009,27(12):1177-180. CrossRef
    6. Atsumi S, Li Z, Liao JC: Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli. / Appl Environ Microbiol 2009,75(19):6306-311. CrossRef
    7. Atsumi S, Wu TY, Eckl EM, Hawkins SD, Buelter T, Liao JC: Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. / Appl Microbiol Biotechnol 2010,85(3):651-57. CrossRef
    8. Baez A, Cho KM, Liao JC: High-flux isobutanol production using engineered Escherichia coli : a bioreactor study with in situ product removal. / Appl Microbiol Biotechnol 2011,90(5):1681-690. CrossRef
    9. Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MM, Arnold FH: Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli . / Metab Eng 2011,13(3):345-52. CrossRef
    10. Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ: Corynebacterium glutamicum tailored for efficient isobutanol production. / Appl Environ Microbiol 2011,77(10):3300-310. CrossRef
    11. Higashide W, Li Y, Yang Y, Liao JC: Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. / Appl Environ Microbiol 2011,77(8):2727-733. CrossRef
    12. Smith KM, Cho KM, Liao JC: Engineering Corynebacterium glutamicum for isobutanol production. / Appl Microbiol Biotechnol 2010,87(3):1045-055. CrossRef
    13. Yamamoto S, Suda M, Niimi S, Inui M, Yukawa H: Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation. / Biotechnol Bioeng 2013,110(10):2938-948. CrossRef
    14. Li S, Wen J, Jia X: Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. / Appl Microbiol Biotechnol 2011,91(3):577-89. CrossRef
    15. Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR: The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. / Appl Environ Microbiol 2008,74(8):2259-266. CrossRef
    16. Kondo A, Ishii J, Hara KY, Hasunuma T, Matsuda F: Development of microbial cell factories for bio-refinery through synthetic bioengineering. / J Biotechnol 2013,163(2):204-16. CrossRef
    17. Kondo T, Tezuka H, Ishii J, Matsuda F, Ogino C, Kondo A: Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae . / Journal of Biotechnology 2012,159(1-):32-7. CrossRef
    18. Chen X, Nielsen KF, Borodina I, Kielland-Brandt MC, Karhumaa K: Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. / Biotechnol Biofuels 2011, 4:21. CrossRef
    19. Brat D, Weber C, Lorenzen W, Bode HB, Boles E: Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae . / Biotechnol Biofuels 2012,5(1):65. CrossRef
    20. Matsuda F, Kondo T, Ida K, Tezuka H, Ishii J, Kondo A: Construction of an artificial pathway for isobutanol biosynthesis in the cytosol of Saccharomyces cerevisiae . / Biosci Biotechnol Biochem 2012,76(11):2139-141. CrossRef
    21. Avalos JL, Fink GR, Stephanopoulos G: Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. / Nat Biotechnol 2013, 31:335-41. CrossRef
    22. Arkblad EL, Betsholtz C, Rydstrom J: The cDNA sequence of proton-pumping nicotinamide nucleotide transhydrogenase from man and mouse. / Biochim Biophys Acta 1996,1273(3):203-05. CrossRef
    23. Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E: The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. / J Biol Chem 2004,279(8):6613-619. CrossRef
    24. Anderlund M, Nissen TL, Nielsen J, Villadsen J, Rydstrom J, Hahn-Hagerdal B, Kielland-Brandt MC: Expression of the Escherichia coli pntA and pntB genes, encoding nicotinamide nucleotide transhydrogenase, in Saccharomyces cerevisiae and its effect on product formation during anaerobic glucose fermentation. / Appl Environ Microbiol 1999,65(6):2333-340.
    25. Nissen TL, Anderlund M, Nielsen J, Villadsen J, Kielland-Brandt MC: Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. / Yeast 2001,18(1):19-2. CrossRef
    26. Moreira dos Santos M, Raghevendran V, Kotter P, Olsson L, Nielsen J: Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments. / Metab Eng 2004,6(4):352-63. CrossRef
    27. Suga H, Matsuda F, Hasunuma T, Ishii J, Kondo A: Implementation of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae . / Appl Microbiol Biotechnol 2012,97(4):1669-678. CrossRef
    28. Matsuda F, Furusawa C, Kondo T, Ishii J, Shimizu H, Kondo A: Engineering strategy of yeast metabolism for higher alcohol production. / Microb Cell Fact 2011,10(1):70. CrossRef
    29. Boles E, de Jong-Gubbels P, Pronk JT: Identification and characterization of MAE1 , the Saccharomyces cerevisiae structural gene encoding mitochondrial malic enzyme. / J Bacteriol 1998,180(11):2875-882.
    30. Ida Y, Furusawa C, Hirasawa T, Shimizu H: Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae . / J Biosci Bioeng 2012,113(2):192-95. CrossRef
    31. Herrgard MJ, Swainston N, Dobson P, Dunn WB, Arga KY, Arvas M, Bluthgen N, Borger S, Costenoble R, Heinemann M, / et al.: A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. / Nat Biotechnol 2008,26(10):1155-160. CrossRef
    32. Hohmann S: Characterization of PDC6 , a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae . / J Bacteriol 1991,173(24):7963-969.
    33. Oud B, Flores CL, Gancedo C, Zhang X, Trueheart J, Daran JM, Pronk JT, van Maris AJ: An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae . / Microb Cell Fact 2012, 11:131. CrossRef
    34. Ishii J, Izawa K, Matsumura S, Wakamura K, Tanino T, Tanaka T, Ogino C, Fukuda H, Kondo A: A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast. / J Biochem 2009,145(6):701-08. CrossRef
    35. Ito H, Fukuda Y, Murata K, Kimura A: Transformation of intact yeast cells treated with alkali cations. / J Bacteriol 1983,153(1):163-68.
    36. Katahira S, Mizuike A, Fukuda H, Kondo A: Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. / Appl Microbiol Biotechnol 2006,72(6):1136-143. CrossRef
  • 作者单位:Fumio Matsuda (1) (2) (3)
    Jun Ishii (2)
    Takashi Kondo (2) (4)
    Kengo Ida (5)
    Hironori Tezuka (5)
    Akihiko Kondo (3) (5)

    1. Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
    2. Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, 657-8501, Japan
    3. RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Turumi-ku, Yokohama, Kanagawa, 230-0045, Japan
    4. Division of Natural Environment and Information, Faculty of Environment and Information Sciences, Yokohama National University, 79-7, Tokiwadai, Hodogaya, Yokohama, 240-8501, Japan
    5. Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, 657-8501, Japan
  • ISSN:1475-2859
文摘
Background Isobutanol is an important target for biorefinery research as a next-generation biofuel and a building block for commodity chemical production. Metabolically engineered microbial strains to produce isobutanol have been successfully developed by introducing the Ehrlich pathway into bacterial hosts. Isobutanol-producing baker’s yeast (Saccharomyces cerevisiae) strains have been developed following the strategy with respect to its advantageous characteristics for cost-effective isobutanol production. However, the isobutanol yields and titers attained by the developed strains need to be further improved through engineering of S. cerevisiae metabolism. Results Two strategies including eliminating competing pathways and resolving the cofactor imbalance were applied to improve isobutanol production in S. cerevisiae. Isobutanol production levels were increased in strains lacking genes encoding members of the pyruvate dehydrogenase complex such as LPD1, indicating that the pyruvate supply for isobutanol biosynthesis is competing with acetyl-CoA biosynthesis in mitochondria. Isobutanol production was increased by overexpression of enzymes responsible for transhydrogenase-like shunts such as pyruvate carboxylase, malate dehydrogenase, and malic enzyme. The integration of a single gene deletion lpd1Δ and the activation of the transhydrogenase-like shunt further increased isobutanol levels. In a batch fermentation test at the 50-mL scale from 100?g/L glucose using the two integrated strains, the isobutanol titer reached 1.62?±-.11?g/L and 1.61?±-.03?g/L at 24?h after the start of fermentation, which corresponds to the yield at 0.016?±-.001?g/g glucose consumed and 0.016?±-.0003?g/g glucose consumed, respectively. Conclusions These results demonstrate that downregulation of competing pathways and metabolic functions for resolving the cofactor imbalance are promising strategies to construct S. cerevisiae strains that effectively produce isobutanol.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700