Implementation of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae
详细信息    查看全文
  • 作者:Hiroyuki Suga (1)
    Fumio Matsuda (2) (3)
    Tomohisa Hasunuma (2)
    Jun Ishii (2)
    Akihiko Kondo (1) (3)
  • 关键词:Transhydrogenase ; like shunt ; Malic enzyme ; Anaplerotic pathway ; Xylose fermentation ; Saccharomyces cerevisiae
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:97
  • 期:4
  • 页码:1669-1678
  • 全文大小:383KB
  • 参考文献:1. Amore R, Kotter P, Kuster C, Ciriacy M, Hollenberg CP (1991) Cloning and expression in / Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene ( / XYL1) from the xylose-assimilating yeast / Pichia stipitis. Gene 109:89-7 CrossRef
    2. Anderlund M, Nissen TL, Nielsen J, Villadsen J, Rydstrom J, Hahn-Hagerdal B, Kielland-Brandt MC (1999) Expression of the / Escherichia coli pntA and / pntB genes, encoding nicotinamide nucleotide transhydrogenase, in / Saccharomyces cerevisiae and its effect on product formation during anaerobic glucose fermentation. Appl Environ Microbiol 65:2333-340
    3. Arkblad EL, Betsholtz C, Rydstrom J (1996) The cDNA sequence of proton-pumping nicotinamide nucleotide transhydrogenase from man and mouse. Biochim Biophys Acta 1273:203-05 CrossRef
    4. Bakker BM, Overkamp KM, van Maris AJ, Kotter P, Luttik MA, van Dijken JP, Pronk JT (2001) Stoichiometry and compartmentation of NADH metabolism in / Saccharomyces cerevisiae. FEMS Microbiol Rev 25:15-7 CrossRef
    5. Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ (2011) / Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 77:3300-310 CrossRef
    6. Boles E, de Jong-Gubbels P, Pronk JT (1998) Identification and characterization of / MAE1, the / Saccharomyces cerevisiae structural gene encoding mitochondrial malic enzyme. J Bacteriol 180:2875-882
    7. Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD (1998) Designer deletion strains derived from / Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115-32 CrossRef
    8. Bro C, Regenberg B, Forster J, Nielsen J (2006) / In silico aided metabolic engineering of / Saccharomyces cerevisiae for improved bioethanol production. Metab Eng 8:102-11 CrossRef
    9. Bruinenberg PM, de Bot PHM, van Dijken JP, Scheffers WA (1983) The role of redox balances in the anaerobic fermentation of xylose by yeasts. Eur J Appl Microbiol Biotechnol 18:287-92 CrossRef
    10. Eliasson A, Christensson C, Wahlbom CF, Hahn-Hagerdal B (2000) Anaerobic xylose fermentation by recombinant / Saccharomyces cerevisiae carrying / XYL1, XYL2, and / XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381-386 CrossRef
    11. Grotkjaer T, Christakopoulos P, Nielsen J, Olsson L (2005) Comparative metabolic network analysis of two xylose fermenting recombinant / Saccharomyces cerevisiae strains. Metab Eng 7:437-44 CrossRef
    12. Hahn-Hagerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF (2007) Metabolic engineering for pentose utilization in / Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:147-77
    13. Hasunuma T, Sung KM, Sanda T, Yoshimura K, Matsuda F, Kondo A (2011) Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered / Saccharomyces cerevisiae. Appl Microbiol Biotechnol 90:997-004 CrossRef
    14. Ho NW, Chen Z, Brainard AP (1998) Genetically engineered / Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852-859
    15. Hsiao H-Y, Chiang L-C, Ueng PP, Tsao GT (1982) Sequential utilization of mixed monosaccharides by yeasts. Appl Environ Microbiol 43:840-45
    16. Ishii J, Izawa K, Matsumura S, Wakamura K, Tanino T, Tanaka T, Ogino C, Fukuda H, Kondo A (2009) A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast. J Biochem 145:701-08 CrossRef
    17. Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163-68
    18. Jeffries TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495-09 CrossRef
    19. Jeppsson M, Johansson B, Hahn-Hagerdal B, Gorwa-Grauslund MF (2002) Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing / Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68:1604-609 CrossRef
    20. Jeppsson M, Johansson B, Jensen PR, Hahn-Hagerdal B, Gorwa-Grauslund MF (2003) The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant / Saccharomyces cerevisiae strains. Yeast 20:1263-272 CrossRef
    21. Johansson B, Hahn-Hagerdal B (2002) The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in / Saccharomyces cerevisiae TMB3001. FEMS Yeast Res 2:277-82
    22. K?tter P, Ciriacy M (1993) Xylose fermentation by / Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776-83 CrossRef
    23. Katahira S, Ito M, Takema H, Fujita Y, Tanino T, Tanaka T, Fukuda H, Kondo A (2008) Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating / S. cerevisiae via expression of glucose transporter Sut1. Enzyme Microb Technol 43:115-19 CrossRef
    24. Katahira S, Mizuike A, Fukuda H, Kondo A (2006) Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 72:1136-143 CrossRef
    25. Kato H, Izumi Y, Hasunuma T, Matsuda F, Kondo A (2012) Widely targeted metabolic profiling analysis of yeast central metabolites. J Biosci Bioeng 113:665-73 CrossRef
    26. Klimacek M, Krahulec S, Sauer U, Nidetzky B (2010) Limitations in xylose-fermenting / Saccharomyces cerevisiae, made evident through comprehensive metabolite profiling and thermodynamic analysis. Appl Environ Microbiol 76:7566-574 CrossRef
    27. Krahulec S, Petschacher B, Wallner M, Longus K, Klimacek M, Nidetzky B (2010) Fermentation of mixed glucose–xylose substrates by engineered strains of / Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Microb Cell Fact 9:16 CrossRef
    28. Matsuda F, Furusawa C, Kondo T, Ishii J, Shimizu H, Kondo A (2011) Engineering strategy of yeast metabolism for higher alcohol production. Microb Cell Fact 10:70 CrossRef
    29. Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered / Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84:37-3 CrossRef
    30. Matsushika A, Watanabe S, Kodaki T, Makino K, Sawayama S (2008) Bioethanol production from xylose by recombinant / Saccharomyces cerevisiae expressing xylose reductase, NADP(+)-dependent xylitol dehydrogenase, and xylulokinase. J Biosci Bioeng 105:296-99 CrossRef
    31. Moreira dos Santos M, Raghevendran V, Kotter P, Olsson L, Nielsen J (2004) Manipulation of malic enzyme in / Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments. Metab Eng 6:352-63 CrossRef
    32. Nevoigt E (2008) Progress in metabolic engineering of / Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72:379-12 CrossRef
    33. Nissen TL, Anderlund M, Nielsen J, Villadsen J, Kielland-Brandt MC (2001) Expression of a cytoplasmic transhydrogenase in / Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast 18:19-2 CrossRef
    34. Pitkanen JP, Aristidou A, Salusjarvi L, Ruohonen L, Penttila M (2003) Metabolic flux analysis of xylose metabolism in recombinant / Saccharomyces cerevisiae using continuous culture. Metab Eng 5:16-1 CrossRef
    35. Rizzi M, Erlemann P, Bui-Thanh N, Dellweg H (1988) Xylose fermentation by yeasts: 4. Purification and kinetic studies of xylose reductase from Pichia stipitis. Appl Microbiol Biotechnol 29:148-54 CrossRef
    36. Rizzi M, Harwart K, Erlemann P, Bui-Thanh N, Dellweg H (1989) Purification and properties of the NAD--xylitol-dehydrogenase from the yeast / Pichia stipitis. J Ferment Bioeng 67:20-4 CrossRef
    37. Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of / Escherichia coli. J Biol Chem 279:6613-619 CrossRef
    38. Sonderegger M, Jeppsson M, Hahn-Hagerdal B, Sauer U (2004) Molecular basis for anaerobic growth of / Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl Environ Microbiol 70:2307-317 CrossRef
    39. Sonderegger M, Sauer U (2003) Evolutionary engineering of / Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69:1990-998 CrossRef
    40. Spura J, Reimer LC, Wieloch P, Schreiber K, Buchinger S, Schomburg D (2009) A method for enzyme quenching in microbial metabolome analysis successfully applied to gram-positive and gram-negative bacteria and yeast. Anal Biochem 394:192-01 CrossRef
    41. Tantirungkij M, Nakashima N, Seki T, Yoshida T (1993) Construction of xylose-assimilating / Saccharomyces cerevisiae. J Ferment Bioeng :83-8
    42. Van Vleet JH, Jeffries TW (2009) Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 20:300-06 CrossRef
    43. Verho R, Londesborough J, Penttila M, Richard P (2003) Engineering redox cofactor regeneration for improved pentose fermentation in / Saccharomyces cerevisiae. Appl Environ Microbiol 69:5892-897 CrossRef
    44. Watanabe S, Abu Saleh A, Pack SP, Annaluru N, Kodaki T, Makino K (2007) Ethanol production from xylose by recombinant / Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from / Pichia stipitis. Microbiology 153:3044-054 CrossRef
  • 作者单位:Hiroyuki Suga (1)
    Fumio Matsuda (2) (3)
    Tomohisa Hasunuma (2)
    Jun Ishii (2)
    Akihiko Kondo (1) (3)

    1. Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
    2. Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
    3. RIKEN Biomass Engineering Program, 1-7-22 Suehirocho, Tsurumi, Yokohama, 230-0045, Japan
  • ISSN:1432-0614
文摘
Three enzymes responsible for the transhydrogenase-like shunt, including malic enzyme (encoded by MAE1), malate dehydrogenase (MDH2), and pyruvate carboxylase (PYC2), were overexpressed to regulate the redox state in xylose-fermenting recombinant Saccharomyces cerevisiae. The YPH499XU/MAE1 strain was constructed by overexpressing native Mae1p in the YPH499XU strain expressing xylose reductase and xylitol dehydrogenase from Scheffersomyces stipitis, and native xylulokinase. Analysis of the xylose fermentation profile under semi-anaerobic conditions revealed that the ethanol yield in the YPH499XU/MAE1 strain (0.38?±-.01?g g? xylose consumed) was improved from that of the control strain (0.31?±-.01?g g? xylose consumed). Reduced xylitol production was also observed in YPH499XU/MAE1, suggesting that the redox balance was altered by Mae1p overexpression. Analysis of intracellular metabolites showed that the redox imbalance during xylose fermentation was partly relieved in the transformant. The specific ethanol production rate in the YPH499XU/MAE1–MDH2 strain was 1.25-fold higher than that of YPH499XU/MAE1 due to the additional overexpression of Mdh2p, whereas the ethanol yield was identical to that of YPH499XU/MAE1. The specific xylose consumption rate was drastically increased in the YPH499XU/MAE1–MDH2–PYC2 strain. However, poor ethanol yield as well as increased production of xylitol was observed. These results demonstrate that the transhydrogenase function implemented in S. cerevisiae can regulate the redox state of yeast cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700