Quantitative structure-activation barrier relationship modeling for Diels-Alder ligations utilizing quantum chemical structural descriptors
详细信息    查看全文
  • 作者:Sisir Nandi (1)
    Alessandro Monesi (1)
    Viktor Drgan (1)
    Franci Merzel (2)
    Marjana Novi? (1)
  • 关键词:Quantitative structure ; activation barrier relationships ; Quantum chemical structural descriptors ; HOMO LUMO Energy ; Diels ; Alder ligations ; Multivariate linear regression and artificial neural network modelling
  • 刊名:Chemistry Central Journal
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:7
  • 期:1
  • 全文大小:549 KB
  • 参考文献:1. Todeschini R, Consonni V: / Molecular Descriptors for Chemoinformatics, Revised and Enlarged Edition. 2nd edition. Weinheim: Wiley-VCH; 2009. CrossRef
    2. Evans MG, Polanyi M: Some applications of the transition state method to the calculation of reaction velocities, especially in solution. / Trans Faraday Soc 1935, 31:875-94. CrossRef
    3. Crum-Brown A, Fraser TR: On the connection between chemical constitution and physiological action. Part 1. On the physiological action of the ammonium bases, derived from Strychia, Brucia, Thebaia, Codeia, Morphia and Nicotia. / Trans R Soc Edinburgh 1868, 25:151-03. CrossRef
    4. Randic M: On molecular identification numbers. / J Chem Inf Comput Sci 1984, 24:164-75. CrossRef
    5. Randic M: On characterization of molecular branching. / J Am Chem Soc 1975, 79:6609-615. CrossRef
    6. Basak SC: / Mathematical descriptors in the prediction of property, bioactivity, and toxicity of chemicals from their structure. Curr Comput Aided Drug Des: A Chemical-Cum-Biochemical Approach; 2013. in press (PMID: 24138422)
    7. Pompe M, Novi? M: Prediction of gas-chromatographic retention indices using topological descriptors. / J Chem Inf Comput Sci 1999, 39:59-7. CrossRef
    8. Mlin?ek G, Novi? M, Hodo??ek M, ?olmajer T: Prediction of enzyme binding : human thrombin inhibition study by quantum chemical and artificial intelligence methods based on X-ray structures. / J Chem Inf Comput Sci 2001, 41:1286-294. CrossRef
    9. Wilcox CF, Carpenter BK: Quantitative prediction of structure-reactivity relationships for unimolecular reactions of unsaturated hydrocarbons. development of a semiempirical model. / J Am Chem Soc 1979, 101:3897-905. CrossRef
    10. Hemmateenejad B, Sanchooli M, Mehdipour A: Quantitative structure–reactivity relationship studies on the catalyzed Michael addition reactions. / J Phys Org Chem 2009, 22:613-18. CrossRef
    11. Craig D, Slavov NK: A quantitative structure–reactivity relationship in decarboxylative Claisen rearrangement reactions of allylic tosylmalonate esters. / Chem Commun 2008, (45):6054-. doi: 10.1039/b812306c. Epub 2008 Oct 14
    12. Michaelides A, Liu Z-P, Zhang CJ, Alavi A, King DA, Hu P: Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces. / J Am Chem Soc 2003, 125:3704-705. CrossRef
    13. Tang S-Y, Shi J, Guo Q-X: Accurate prediction of rate constants of Diels–Alder reactions and application to design of Diels–Alder ligation. / Org Biomol Chem 2012, 10:2673-682. CrossRef
    14. Lindstr?m UM: Stereoselective organic reactions in water. / Chem Rev 2002, 102:2751-772. CrossRef
    15. Otto S, Engberts JBFN: Hydrophobic interactions and chemical reactivity. / Org Biomol Chem 2003, 1:2809-820. CrossRef
    16. Breslow R, Zhu Z: Quantitative antihydrophobic effects as probes for transition state structures. 2. Diels-Alder reactions. / J Am Chem Soc 1995, 117:9923-924. CrossRef
    17. Breslow R, Dong SD: Biomimetic reactions catalyzed by cyclodextrins and their derivatives. / Chem Rev 1998, 98:1997-011. CrossRef
    18. Breslow R, Groves K, Mayer MU: Antihydrophobic cosolvent effects for alkylation reactions in water solution, particularly oxygen versus carbon alkylations of phenoxide ions. / J Am Chem Soc 2002, 124:3622-635. CrossRef
    19. Meijer A, Otto S, Engberts JBFN: Effects of the Hydrophobicity of the Reactants on Diels-?Alder Reactions in Water. / J Org Chem 1998, 63:8989-994. CrossRef
    20. Otto S, Blokzijl W, Engberts JBFN: Diels-Alder reactions in water. effects of hydrophobicity and hydrogen bonding. / J Org Chem 1994, 59:5372-376. CrossRef
    21. Sun XL, Yang LC, Chaikof EL: Chemoselective immobilization of biomolecules through aqueous Diels-Alder and PEG chemistry. / Tetrahedron Lett 2008, 49:2510-513. CrossRef
    22. Diels O, Alder K: Synthesen in der hydroaromatischen Reihe. / Justus Liebigs Ann Chem 1928, 460:98-22. CrossRef
    23. Kloetzel MC: The Diels-Alder reactions with Maleic Anhydride. / Org React 1948, 4:1-9.
    24. Holmes HL: The Diels–Alder reaction: ethylenic and acetylenic dienophiles. / Org React 1948, 4:60-73.
    25. Kagan HB, Riant O: Catalytic asymmetric Diels Alder reactions. / Chem Rev 1992, 92:1007-019. CrossRef
    26. Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G: The Diels–Alder reaction in total synthesis. / Angew Chem Int Ed 2002, 41:1668-698. CrossRef
    27. Braun K, Wiessler M, Waldeck W, Kliem C, Pipkorn R: The Diels-Alder-reaction with inverse-electron-demand, a very efficient versatile click-reaction concept for proper ligation of variable molecular partners. / Int J Med Sci 2010, 7:19-8.
    28. Hill KW, Taunton-Rigby J, Carter JD, Kropp E, Vagle K, Pieken W, McGee DPC, Husar GM, Leuck M, Anziano DJ, Sebesta DP: Diels-?Alder bioconjugation of Diene-modified oligonucleotides. / J Org Chem 2001, 66:5352-358. CrossRef
    29. Husar GM, Anziano DJ, Leuck M, Sebesta DP: Nucleosides: covalent modification and surface immobilization of nucleic acids via the Diels-Alder bioconjugation method. / Nucleotides Nucleic Acids 2001, 20:559-66. CrossRef
    30. Marchan V, Ortega S, Pulido D, Pedroso E, Grandas A: Diels-Alder cycloadditions in water for the straightforward preparation of peptide-oligonucleotide conjugates. / Nucleic Acids Res 2006, 34:e24. CrossRef
    31. Steven V, Graham D: Oligonucleotide conjugation to a cell-penetrating (TAT) peptide by Diels-Alder cycloaddition. / Org Biomol Chem 2008, 6:3781-787. CrossRef
    32. Thorson JS, Langenhan JM: Recent Carbohydrate-based chemoselective ligation applications. / Curr Org Synth 2005, 2:59-1. CrossRef
    33. Tiefenbrunn TK, Dawson PE: Chemoselective ligation techniques: modern applications of time-honored chemistry. / Biopolymers 2010, 94:95-06. CrossRef
    34. Hoffmann R, Lipscomb WN: The Boron hydrides; LCAO-MO and resonance studies. / J Chem Phys 1962, 37:2872-883. CrossRef
    35. Fukui K: Role of frontier orbitals in chemical reactions. / Science 1982, 218:747-54. CrossRef
    36. Woodward RB, Hoffmann R: The conservation of orbital symmetry. / Angew Chem Int Edit 1969, 8:781-32. CrossRef
    37. Gothelf KV, Jorgensen KA: Asymmetric 1,3-Dipolar cycloaddition reactions. / Chem Rev 1998, 98:863-09. CrossRef
    38. Fukui K, Yonezawa T, Shingu H: A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons. / J Chem Phys 1952, 20:722-25. CrossRef
    39. Craig D, Fowler RB, Shipman JJ: The rate of reaction of maleic anhydride with 1,3-Dienes as related to diene conformation. / J Am Chem Soc 1961, 83:2885-891. CrossRef
    40. Rulisek L, Sebek P, Havlas Z, Hrabal R, Capek P, Svatos A: An experimental and theoretical study of stereoselectivity of furan-maleic anhydride and furan-maleimide diels-alder reactions. / J Org Chem 2005, 70:6295-302. CrossRef
    41. Engberts JBFN, Rispens T: Micellar catalysis of Diels-Alder reactions: substrate positioning in the micelle. / J Org Chem 2002, 67:7369-377. CrossRef
    42. Sauer J: Diels-Alder reactions. II. The reaction mechanism. / Angew Chem Int Ed 1967, 6:16-3. CrossRef
    43. Sauer J, Wiest H, Mielert A: Diels-Alder reaction. I. Reactivity of dienophiles towards cyclopentadiene and 9,10-Dimethyl anthracene. / Chem Ber 1964, 97:3183-207. CrossRef
    44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas ?, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ: / Gaussian 09. Gaussian, Inc.; 2009.
    45. Maynard AT, Huang M, Rice WG, Covell DG: Reactivity of the HIV-1 nucleocapsid protein p7 zinc finger domains from the perspective of density-functional theory. / Proc Natl Acad Sci USA 1998, 95:11578-1583. CrossRef
    46. Parr RG, Chattaraj PK: Principle of maximum hardness. / J Am Chem Soc 1991, 113:1854-855. CrossRef
    47. Vela A, Gazquez JL: A relationship between the static dipole polarizability, the global softness and the Fukui function. / J Am Chem Soc 1990, 112:1490-492. CrossRef
    48. Koopmans T: über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. / Physica 1, 1:104-13. CrossRef
    49. Sustmann R: Orbital energy control of cycloaddition reactivity. / Pure Appl Chem 1974, 40:569-93. CrossRef
    50. Brown RE, Simas AM: On the applicability of CNDO indices for the prediction of chemical reactivity. / Theor Chim Acta 1982, 62:1-6. CrossRef
    51. Gruber C, Buss V: Quantum-mechanically calculated properties for the development of quantitative structure-activity relationships (QSAR'S). pKA-values of phenols and aromatic and aliphatic carboxylic acids. / Chemosphere 1989, 19:1595-609. CrossRef
    52. Bodor N, Gabanyi Z, Wong C-K: A new method for the estimation of partition coefficient. / J Am Chem Soc 1989, 111:3783-786. CrossRef
    53. Buydens L, Massart D, Geerlings P: Prediction of gas chromatographic retention indexes with topological, physico-chemical, and quantum chemical parameters. / Anal Chem 1983, 55:738-44. CrossRef
    54. Murugan R, Grendze MP, Toomey JE Jr, Katritzky AR, Karelson M, Lobanov VS, Rachwal P: Predicting physical properties from molecular structure. / Chem Tech 1994, 24:17-3.
    55. Liu P-Y, Wu Y-J, Pye CC, Thornton PD, Poirier RA, Burnell DJ: Facial Selectivity in the Diels–Alder reactions of 2,2-disubstituted cyclopent-4-ene-1,3-dione derivatives and a computational examination of the facial selectivity of the Diels–Alder reactions of structurally related dienes and dienophiles. / Eur J Org Chem 2012, 2012:1186-194. CrossRef
    56. Kahn SD, Hehre WJ: Modeling chemical reactivity. 5. Facial selectivity in Diels-Alder cycloadditions. / J Am Chem Soc 1987, 109:663-66. CrossRef
    57. Roy K, PP R: On Some aspects of variable selection for partial least squares regression models. / QSAR Comb Sci 2008, 27:302-13. CrossRef
    58. Roy PP, Roy K: Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA PLS and ANN techniques. / G/Eur J Med Chem 2009, 44:2913-922. CrossRef
    59. Roy K, Chakraborty P, Mitra I, Ojha PK, Kar S: Das RN some case studies on application of “rm2-metrics for judging quality of quantitative structure–activity relationship predictions: emphasis on scaling of response data. / J Comput Chem 2013, 34:1071-082. CrossRef
    60. Nandi S, Bagchi MC: In silico design of potent EGFR kinase inhibitors using combinatorial libraries. / Mol Simul 2011, 37:196-09. CrossRef
    61. Minovski N, Zuperl S: Drgan V, Novi? M: Assessment of applicability domain for multivariate counter-propagation artificial neural network predictive models by minimum Euclidean distance space analysis: A case study. / Anal Chim Acta 2013, 759:28-2. CrossRef
    62. Netzeva TI, Worth AP, Aldenberg T, Benigni R, Cronin MTD, Gramatica P, Jaworska JS, Kahn S, Klopman G, Marchant CA, Myatt G, Nikolova-Jeliazkova N, Patlewicz GY, Perkins R, Roberts DW, Schultz TW, Stanton DT, van de Sandt JM, Tong W, Veith G, Yang C: Current status of methods for defining the applicability domain of (Quantitative) structure-activity relationships. / ATLA 2005, 33:155-73.
    63. Eriksson L, Jaworska J, Worth AP, Cronin MTD, McDowell RM, Gramatica P: Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-baes QSARs. / Environ. Health Persp. 2003, 111:1361-375. CrossRef
    64. Bader RFW: Definition of molecular structure: by choice or by appeal to observation? / J Phys Chem A 2010, 114:7431-444. CrossRef
    65. Kr?an A, Mavri J: Atomic volume as a descriptor for carbon electronic structure and stability. / Org Chem 2011, 76:1891-893. CrossRef
    66. Mills N: ChemDraw Ultra 10.0. / J. Am. Chem. Soc 2006, 128:13649-3650. CrossRef
    67. Tomasi J, Mennucci B, Cammi R: Quantum mechanical continuum solvation models. / Chem Rev 2005, 105:2999-093. CrossRef
    68. Katritzky AR, Petrukhin R, Tatham D, Basak S, Benfenati E, Karelson M, Maran U: Interpretation of quantitative structure–property and–activity relationships. / J Chem Inf Comput Sci 2001, 41:679-85. CrossRef
    69. / Challenges and Advances in Computational Chemistry and Physics. Springer, Dordrecht: Puzyn T, Leszczynski J, Cronin MTD; 2009.
    70. Minitab? Statistical Software: / Minitab. 2010. http://www.minitab.com (accessed October 29th 2013)
    71. Zupan J, Gasteiger J: / Neural Networks for Chemists: an introduction. Weinheim: VCH; 1993.
  • 作者单位:Sisir Nandi (1)
    Alessandro Monesi (1)
    Viktor Drgan (1)
    Franci Merzel (2)
    Marjana Novi? (1)

    1. Laboratory of Chemometrics, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia
    2. Laboratory of Biomolecular Structure, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia
  • ISSN:1752-153X
文摘
Background In the present study, we show the correlation of quantum chemical structural descriptors with the activation barriers of the Diels-Alder ligations. A set of 72 non-catalysed Diels-Alder reactions were subjected to quantitative structure-activation barrier relationship (QSABR) under the framework of theoretical quantum chemical descriptors calculated solely from the structures of diene and dienophile reactants. Experimental activation barrier data were obtained from literature. Descriptors were computed using Hartree-Fock theory using 6-31G(d) basis set as implemented in Gaussian 09 software. Results Variable selection and model development were carried out by stepwise multiple linear regression methodology. Predictive performance of the quantitative structure-activation barrier relationship (QSABR) model was assessed by training and test set concept and by calculating leave-one-out cross-validated Q2 and predictive R2 values. The QSABR model can explain and predict 86.5% and 80% of the variances, respectively, in the activation energy barrier training data. Alternatively, a neural network model based on back propagation of errors was developed to assess the nonlinearity of the sought correlations between theoretical descriptors and experimental reaction barriers. Conclusions A reasonable predictability for the activation barrier of the test set reactions was obtained, which enabled an exploration and interpretation of the significant variables responsible for Diels-Alder interaction between dienes and dienophiles. Thus, studies in the direction of QSABR modelling that provide efficient and fast prediction of activation barriers of the Diels-Alder reactions turn out to be a meaningful alternative to transition state theory based computation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700