The Strain-Hardening Behavior of TZAV-30 Alloy After Various Heat Treatments
详细信息    查看全文
  • 作者:S. X. Liang ; L. X. Yin ; L. Y. Zheng…
  • 关键词:heat treatment ; microstructure ; strain hardening ; titanium alloys
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:25
  • 期:2
  • 页码:530-535
  • 全文大小:1,133 KB
  • 参考文献:1.D. Banerjee and J.C. Williams, Perspectives on Titanium Science and Technology, Acta Mater., 2013, 61, p 844–879CrossRef
    2.Z. Huda and P. Edi, Materials Selection in Design of Structures and Engines of Supersonic Aircrafts: A Review, Mater. Des., 2013, 46, p 552–560CrossRef
    3.A. Ishida, M. Sato, and Z.Y. Gao, Effects of Ti Content on Microstructure and Shape Memory Behavior of TixNi(84.5−x)Cu15.5 (x = 44.6–55.4) Thin Films, Acta Mater., 2014, 69, p 292–300CrossRef
    4.Z.W. Chen, X.Z. Xiao, L.X. Chen, X.L. Fan, L.X. Liu, S.Q. Li, H.W. Ge, and Q.D. Wang, Development of Ti–Cr–Mn–Fe Based Alloys with High Hydrogen Desorption Pressures for Hybrid Hydrogen Storage Vessel Application, Int. J. Hydrog. Energy, 2013, 38, p 12803–12810CrossRef
    5.S.X. Liang, M.Z. Ma, R. Jing, X.Y. Zhang, and R.P. Liu, Microstructure and Mechanical Properties of Hot-Rolled ZrTiAlV Alloys, Mater. Sci. Eng. A, 2012, 532, p 1–5CrossRef
    6.R. Jing, S.X. Liang, C.Y. Liu, M.Z. Ma, X.Y. Zhang, and R.P. Liu, Structure and Mechanical Properties of Ti–6Al–4V Alloy After Zirconium Addition, Mater. Sci. Eng. A, 2012, 552, p 295–300CrossRef
    7.R. Jing, S.X. Liang, C.Y. Liu, M.Z. Ma, and R.P. Liu, Aging Effects on the Microstructures and Mechanical Properties of the Ti–20Zr–6.5Al–4V Alloy, Mater. Sci. Eng. A, 2013, 559, p 474–479CrossRef
    8.S.X. Liang, M.Z. Ma, R. Jing, Y.K. Zhou, Q. Jing, and R.P. Liu, Preparation of the ZrTiAlV Alloy with Ultra-High Strength and Good Ductility, Mater. Sci. Eng. A, 2012, 539, p 42–47CrossRef
    9.MJ Donachie Jr., Titanium: A Technical Guide, ASM international, Metals Park, 1998
    10.J.G. Eom, Y.H. Son, S.W. Jeong, S.T. Ahn, S.M. Jang, D.J. Yoon, and M.S. Joun, Effect of Strain Hardening Capability on Plastic Deformation Behaviors of Material During Metal Forming, Mater. Des., 2014, 54, p 1010–1018CrossRef
    11.S.Q. Wang, J.H. Liu, and D.L. Chen, Effect of Strain Rate and Temperature on Strain Hardening Behavior of a Dissimilar Joint Between Ti–6Al–4V and Ti17 Alloys, Mater. Des., 2014, 56, p 174–184CrossRef
    12.B.D. Venkatesh, D.L. Chen, and S.D. Bhole, Effect of Heat Treatment on Mechanical Properties of Ti–6Al–4V ELI, Alloy, Mater. Sci. Eng. A, 2009, 506, p 117–124CrossRef
    13.X.R. Zuo, Y.B. Chen, and M.H. Wang, Study on Microstructures and Work Hardening Behavior of Ferrite-Martensite Dual-Phase Steels with High-Content Martensite, Mater. Res., 2012, 15, p 915–921CrossRef
    14.O. Ertorer, T. Topping, Y. Li, W. Moss, and E.J. Laverni, Enhanced Tensile Strength and High Ductility in Cryomilled Commercially Pure Titanium, Scr. Mater., 2009, 60, p 586–589CrossRef
    15.S.X. Liang, M.Z. Ma, R. Jing, C.L. Tan, and R.P. Liu, Structural Evolution and Mechanical Properties of Zr–45Ti–5Al–3V Alloy by Heat Treatments, Mater. Sci. Eng. A, 2012, 541, p 67–72CrossRef
    16.ISO, 6892-1, Metallic Materials: Tensile Testing—Part 1: Method of Test at Room Temperature, ISO, Brussels, 2009
    17.S.X. Liang, L.X. Yin, R. Jing, X.Y. Zhang, M.Z. Ma, and R.P. Liu, Structure and Mechanical Properties of the Annealed TZAV-30 Alloy, Mater. Des., 2014, 58, p 368–373CrossRef
    18.J.H. Hollomon, Tensile Deformation, Trans. AIME, 1945, 162, p 268–290
    19.M. Premkumar and A.K. Singh, Deformation Behavior of an Ordered B2 Phase in Ti–25Al–25Zr Alloy, Intermetallics, 2010, 18, p 199–201CrossRef
    20.Z. Yu and L. Zhou, Influence of Martensitic Transformation on Mechanical Compatibility of Biomedical β Type Titanium Alloy TLM, Mater. Sci. Eng. A, 2006, 391, p 438–440
    21.E. Ahmad, T. Manzoor, and N. Hussain, Thermomechanical Processing in the Intercritical Region and Tensile Properties of Dual-Phase Steel, Mater. Sci. Eng. A, 2009, 508, p 259–265CrossRef
    22.A.A. Salem, S.R. Kalidindi, R.D. Doherty, and S.L. Semiatin, Strain Hardening Due to Deformation Twinning in α-Titanium: Mechanisms, Metall. Mater. Trans. A, 2006, 37, p 259–268CrossRef
    23.S.X. Liang, L.X. Yin, R. Jing, X.Y. Zhang, M.Z. Ma, and R.P. Liu, Deformation Mechanisms of a ZrTiAlV Alloy with Two Ductile Phases, J. Mater. Res., 2013, 28, p 2715–2719CrossRef
    24.N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, C. Li, D.Y. Li, and D.L. Chen, Influence of Yttrium Content on Phase Formation and Strain Hardening Behavior of Mg–Zn–Mn Magnesium Alloy, J. Alloys Compd., 2014, 615, p 424–432CrossRef
    25.B.S. Wang, R.L. Xin, G.J. Huang, and Q. Liu, Effect of Crystal Orientation on the Mechanical Properties and Strain Hardening Behavior of Magnesium Alloy AZ31 During Uniaxial Compression, Mater. Sci. Eng. A, 2012, 534, p 588–593CrossRef
    26.D. Sarker and D.L. Chen, Detwinning and Strain Hardening of an Extruded Magnesium Alloy During Compression, Scr. Mater., 2012, 67, p 165–168CrossRef
    27.J.W. Won, C.H. Park, S.G. Hong, and C.S. Lee, Deformation Anisotropy and Associated Mechanisms in Rolling Textured High Purity Titanium, J. Alloys Compd., 2015, 651, p 245–254CrossRef
    28.S.X. Liang, L.X. Yin, X.Y. Liu, X.L. Zhang, M.Z. Ma, R.P. Liu, and C.L. Tan, Microstructure Evolution and Mechanical Properties Response of a TZAV Alloy During Combined Thermomechanical Treatments, Mater. Sci. Eng. A, 2014, 619, p 87–94CrossRef
    29.S. Neelakantan, E.I. Galindo-Nava, D.S. Martin, J. Chao, and P.E.J. Rivera-Díaz-del-Castillo, Modelling and Design of Stress-Induced Martensite Formation in Metastable β Ti Alloys, Mater. Sci. Eng. A, 2014, 590, p 140–146CrossRef
    30.S. Hanada, N. Masahashi, and T.K. Jung, Effect of Stress-Induced α″ Martensite on Young’s Modulus of β Ti-33.6Nb-4Sn Alloy, Mater. Sci. Eng. A, 2013, 588, p 403–410CrossRef
    31.Z. Wyatt and S. Ankem, The Effect of Metastability on Room Temperature Deformation Behavior of β and α + β Titanium Alloys, J. Mater. Sci., 2010, 45, p 5022–5031CrossRef
    32.C. Li, J.H. Chen, X. Wu, W. Wang, and S. Zwaag, Tuning the Stress Induced Martensitic Formation in Titanium Alloys by Alloy Design, J. Mater. Sci., 2012, 47, p 4093–4100CrossRef
    33.R.J. Hill and C.J. Howard, Quantitative Phase Analysis from Neutron Powder Diffraction Data Using the Rietveld Method, J. Appl. Cryst., 1987, 20, p 467–474CrossRef
    34.U.F. Kocks and H. Mecking, Physics and Phenomenology of Strain Hardening: The FCC Case, Prog. Mater Sci., 2003, 48, p 171–273CrossRef
    35.J.H. Lee, T.B. Holland, A.K. Mukherjee, X.H. Zhang, and H.Y. Wang, Direct Observation of Lomer-Cottrell Locks During Strain Hardening in Nanocrystalline Nickel by In Situ TEM, Sci. Rep., 1061, 2013(3), p 1–6
    36.D.S. Kang, N. Koga, M. Sakata, N. Nakada, T. Tsuchiyama, and S. Takaki, Enhanced Work Hardening by Redistribution of Oxygen in (α + β)-Type Ti–4Cr–0.2O Alloys, Mater. Sci. Eng. A, 2014, 606, p 101–107CrossRef
    37.D.K. Yang, P.D. Hodgson, and C.E. Wen, Simultaneously Enhanced Strength and Ductility of Titanium Via Multimodal Grain Structure, Scr. Mater., 2010, 63, p 941–944CrossRef
    38.Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, and Y.T. Zhu, Simultaneously Increasing the Ductility and Strength of Nanostructured Alloys, Adv. Mater., 2006, 18, p 2280–2283CrossRef
    39.R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater. Sci., 2000, 45, p 103–189CrossRef
    40.Q. Wei, L. Kecskes, T. Jiao, K.T. Hartwig, K.T. Ramesh, and E. Ma, Adiabatic Shear Banding in Ultrafine-Grained Fe Processed by Severe Plastic Deformation, Acta Mater., 2004, 52, p 1859–1869CrossRef
  • 作者单位:S. X. Liang (1)
    L. X. Yin (1)
    L. Y. Zheng (1)
    M. Z. Ma (2)
    R. P. Liu (2)

    1. College of Equipment Manufacture, Hebei University of Engineering, Handan, 056038, China
    2. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Characterization and Evaluation Materials
    Materials Science
    Tribology, Corrosion and Coatings
    Quality Control, Reliability, Safety and Risk
    Engineering Design
  • 出版者:Springer New York
  • ISSN:1544-1024
文摘
The Ti-Zr-Al-V series titanium alloys with excellent mechanical properties and low density exhibit tremendous application potential as structural materials in aviation, automotive, and navigation industries. The strain-hardening behavior of Ti-30Zr-5Al-3V (wt.%, TZAV-30) alloy with various heat treatments is investigated in this study. Experimental results show that strain-hardening behavior of the examined alloy depends on the heat treatment process. The average strain-hardening exponent, n, is approximately 0.061 for WA specimen (825 °C/0.5 h/water quenching + 600 °C/4 h/air cooling), 0.068 for FC (850 °C/0.5 h/furnace cooling), 0.121 for AC (850 °C/0.5 h/air cooling), and 0.412 for WQ (850 °C/0.5 h/water quenching). Analysis of strain-hardening rate versus true strain curves indicates that higher n of AC specimen results from the lower degradation rate of strain-hardening rate with strain, and the ultrahigh n of WQ specimen is attributed to the evident increase in strain-hardening rate at the true strain from 0.04 to 0.06. Phase constitution and microstructural analyses reveal that the n of the examined alloy with α + β phases increases with the increase in the relative content of the retained β phase but is independent of average thickness of α plates. The increase in strain-hardening rate in WQ specimen depends on metastable α″ martensite and martensitic transition induced by tensile stress. Keywords heat treatment microstructure strain hardening titanium alloys

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700