A classification of pentavalent arc-transitive bicirculants
详细信息    查看全文
  • 作者:Iva Anton?i? ; Ademir Hujdurovi? ; Klavdija Kutnar
  • 关键词:Bicirculant ; Vertex ; transitive ; Edge ; transitive ; Arc ; transitive ; Automorphism group
  • 刊名:Journal of Algebraic Combinatorics
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:41
  • 期:3
  • 页码:643-668
  • 全文大小:408 KB
  • 参考文献:1. Arroyo, A., Hubard, I., Kutnar, K., O’Reilly, E., ?parl, P.: Classification of symmetric Taba?jn graphs. Graphs Combin. (2014). doi:10.1007/s00373-014-1447-8
    2. Bosma, W, Cannon, J, Playoust, C (1997) The Magma algebra system I: the user language. J. Symb. Comput. 24: pp. 235-265 CrossRef
    3. Du, SF, Kwak, JH, Xu, MY (2005) On $$2$$ 2 -arc-transitive covers of complete graphs with covering transformation group $${\mathbb{Z}}_p^3$$ Z p 3. J. Comb. Theory B 93: pp. 73-93 CrossRef
    4. Du, SF, Malni?, A, Maru?i?, D (2008) Classification of 2-arc-transitive dihedrants. J. Comb. Theory B 98: pp. 1349-1372 CrossRef
    5. Frelih, B, Kutnar, K (2013) Classification of cubic symmetric tetracirculants and pentacirculants. Eur. J. Comb. 34: pp. 169-194 CrossRef
    6. Frucht, R, Graver, JE, Watkins, ME (1971) The groups of the generalized Petersen graphs. Proc. Camb. Philos. Soc. 70: pp. 211-218 CrossRef
    7. Godsil, CD, Royle, GF (2001) Algebraic Graph Theory. Springer, New York CrossRef
    8. Gross, JL, Tucker, TW (1977) Generating all graph coverings by permutation voltage assignment. Discrete Math. 18: pp. 273-283 CrossRef
    9. Gross, JL, Tucker, TW (1987) Topological Graph Theory. Wiley-Interscience, New York
    10. Guo, ST, Feng, YQ (2012) A note on pentavalent s-transitive graphs. Discrete Math. 312: pp. 2214-2216 CrossRef
    11. Herzog, M, Kaplan, G (2001) Large cyclic subgroups contain non-trivial normal subgroups. J. Group Theory 4: pp. 247-253 CrossRef
    12. Hong, S, Kwak, JH, Lee, J (1996) Regular graph coverings whose covering transformation groups have the isomorphism extension property. Discrete Math. 168: pp. 85-105 CrossRef
    13. Isaacs, IM (2008) Finite Group Theory. American Mathematical Society, Providence CrossRef
    14. Kovács, I, Malni?, A, Maru?i?, D, Miklavi?, ? (2009) One-matching bi-Cayley graphs over abelian groups. Eur. J. Comb. 30: pp. 602-616 CrossRef
    15. Kovács, I, Kuzman, B, Malni?, A (2010) On non-normal arc transitive 4-valent dihedrants. Acta Math. Sin. 26: pp. 1485-1498 CrossRef
    16. Kovács, I, Kutnar, K, Maru?i?, D (2010) Classification of edge-transitive rose window graphs. J. Graph Theory 65: pp. 216-231 CrossRef
    17. Kovács, I, Kutnar, K, Maru?i?, D, Wilson, S (2012) Classification of cubic symmetric tricirculants. Elect. J. Comb. 19: pp. #P24
    18. Kovács, I, Kuzman, B, Malni?, A, Wilson, S (2012) Characterization of edge-transitive 4-valent bicirculants. J. Graph Theory 69: pp. 441-463 CrossRef
    19. Lorimer, P (1984) Vertex-transitive graphs: symmetric graphs of prime valency. J. Graph Theory 8: pp. 55-68 CrossRef
    20. Malni?, A (1998) Group actions, coverings and lifts of automorphisms. Discrete Math. 182: pp. 203-218 CrossRef
    21. Malni?, A, Nedela, R, ?koviera, M (2000) Lifting graph automorphisms by voltage assignments. Eur. J. Comb. 21: pp. 927-947
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Combinatorics
    Convex and Discrete Geometry
    Order, Lattices and Ordered Algebraic Structures
    Computer Science, general
    Group Theory and Generalizations
  • 出版者:Springer U.S.
  • ISSN:1572-9192
文摘
A bicirculant is a graph admitting an automorphism with two cycles of equal length in its cycle decomposition. A graph is said to be arc-transitive if its automorphism group acts transitively on the set of its arcs. All cubic and tetravalent arc-transitive bicirculants are known, and this paper gives a complete classification of connected pentavalent arc-transitive bicirculants. In particular, it is shown that, with the exception of seven particular graphs, a connected pentavalent bicirculant is arc-transitive if and only if it is isomorphic to a Cayley graph \(\mathrm{Cay}(D_{2n},\{b,ba,ba^{r+1},ba^{r^2+r+1},ba^{r^3+r^2+r+1}\})\) on the dihedral group \(D_{2n}=\langle a,b\mid a^n=b^2=baba=1 \rangle \) , where \(r\in \mathbb {Z}_n^*\) such that \(r^4+r^3+r^2+r+1 \equiv 0 \pmod {n}\) .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700