Initiation of mRNA translation in bacteria: structural and dynamic aspects
详细信息    查看全文
  • 作者:Claudio O. Gualerzi ; Cynthia L. Pon
  • 关键词:Protein synthesis ; Translation initiation factors ; mRNA initiation region ; fMet ; tRNA ; GTP
  • 刊名:Cellular and Molecular Life Sciences (CMLS)
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:72
  • 期:22
  • 页码:4341-4367
  • 全文大小:4,848 KB
  • 参考文献:1.Gold L (1988) Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem 57:199鈥?33PubMed
    2.McCarthy JEG, Gualerzi C (1990) Translational control of prokaryotic gene expression. Trends Genet 6:78鈥?5PubMed
    3.Winkler WC, Breaker RR (2005) Regulation of bacterial gene expression by riboswitches. Ann Rev Microbiol 59:487鈥?17
    4.Caron MP, Bastet L, Lusster A, Simoneau-Roy M, Mass茅 E, Lafontaine DA (2012) Dual-acting riboswitch control of translation initiation and mRNA decay. Proc Natl Acad Sci USA 109:E3444鈥揈3453PubMedCentral PubMed
    5.Yarchuk O, Jacques N, Guillerez J, Dreyfus M (1992) Interdependence of translation, transcription and mRNA degradation in the lacZ gene. J Mol Biol 226:581鈥?96PubMed
    6.Deana A, Belasco JG (2005) Lost in translation: the influence of ribosomes on bacterial mRNA decay. Genes Dev 19:2526鈥?533PubMed
    7.Gualerzi CO, Brandi L, Caserta E, Garofalo C, Lammi M, La Teana A, Petrelli D, Spurio R, Tomsic J, Pon CL (2001) Role of the initiation factors in the early events of mRNA translation in bacteria. Cold Spring Harbor Symp Quant Biol 66:363鈥?76PubMed
    8.Gualerzi CO, Fabbretti A, Brandi L, Milon P, Pon CL (2010) Role of the initiation factors in mRNA start site selection and fMet-tRNA recruitment by bacterial ribosomes. Isr J Chem 50:80鈥?4
    9.Mil贸n P, Rodnina MV (2012) Kinetic control of translation initiation in bacteria. Crit Rev Biochem Mol Biol 47:334鈥?48PubMed
    10.Schmitt E, Panvert M, Blanquet S, Mechulam Y (1998) Crystal structure of methionyl-tRNAfMet transformylase complexed with the initiator formyl-methionyl-tRNAfMet. EMBO J 17:6819鈥?826PubMedCentral PubMed
    11.Sussman JK, Simons EL, Simons RW (1996) Escherichia coli translation initiation factor 3 discriminates the initiation codon in vivo. Mol Microbiol 21:347鈥?60PubMed
    12.Van Etten WJ, Janssen GR (1998) An AUG initiation codon, not codon-anticodon complementarity, is required for the translation of unleadered mRNA in Escherichia coli. Mol Microbiol 27:987鈥?001PubMed
    13.Ringquist S, Shinedling S, Barrick D, Green L, Binkley J, Stormo GD, Gold L (1992) Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Mol Microbiol 6:1219鈥?229PubMed
    14.Gualerzi C, Pon CL (1981) Protein biosynthesis in prokaryotic cells: mechanism of 30S initiation complex formation in Escherichia coli. In: Sussman JL, Traub W, Yonath A (eds) Structural aspects of recognition and assembly in biological macromolecules: nucleic acids and nucleic acid complexes. Balaban ISS, Rehovot, pp 805鈥?26
    15.Jacques N, Dreyfus M (1990) Translation initiation in Escherichia coli: old and new questions. Mol Microbiol 4:1063鈥?067PubMed
    16.Accetto T, Avgustin G (2011) Inability of Prevotella bryantii to form a functional Shine鈥揇algarno interaction reflects unique evolution of ribosome binding sites in Bacteroides. PLoS ONE 6(8):e22914. doi:10.鈥?371/鈥媕ournal.鈥媝one.鈥?022914 PubMedCentral PubMed
    17.Chang B, Halgamuge S, Tang S (2006) Analysis of SD sequences in completed microbial genomes: non-SD-led genes are as common as SD-led genes. Gene 373:90鈥?9PubMed
    18.Scharff LB, Childs L, Walther D, Bock R (2011) Local absence of secondary structure permits translation of mRNAs that lack ribosome-binding sites. PLoS Genet 7(6):e1002155. doi:10.鈥?371/鈥媕ournal.鈥媝gen.鈥?002155 PubMedCentral PubMed
    19.Hui A, de Boer HA (1987) Specialized ribosome system: preferential translation of a single mRNA species by a subpopulation of mutated ribosomes in Escherichia coli. Proc Natl Acad Sci USA 84:4762鈥?766PubMedCentral PubMed
    20.Jacob WF, Santer M, Dahlberg AE (1987) A single base change in the Shine鈥揇algarno region of 16S rRNA of Escherichia coli affects translation of many proteins. Proc Natl Acad Sci USA 84:4757鈥?761PubMedCentral PubMed
    21.Jin H, Zhao Q, Gonzalez de Valdivia EI, Ardell DH, Stenstr枚m M, Isaksson LA (2006) Influences on gene expression in vivo by a Shine鈥揇algarno sequence. Mol Microbiol 60:480鈥?92PubMed
    22.Calogero RA, Pon CL, Canonaco MA, Gualerzi CO (1988) Selection of the mRNA translation initiation region by Escherichia coli ribosomes. Proc Natl Acad Sci USA 85:6427鈥?431PubMedCentral PubMed
    23.Milon P, Konevega AL, Gualerzi CO, Rodnina MV (2008) Kinetic checkpoint at a late step in translation initiation. Mol Cell 30:712鈥?20PubMed
    24.Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-sequence determinants of gene expression in Escherichia coli. Science 324:255鈥?58PubMedCentral PubMed
    25.Nakamoto T (2006) A unified view of the initiation of protein synthesis. Biochem Biophys Res Commun 341:675鈥?78PubMed
    26.Ma J, Campbell A, Karlin S (2002) Correlations between Shine鈥揇algarno sequences and gene features such as predicted expression levels and operon structures. J Bacteriol 184:5733鈥?745PubMedCentral PubMed
    27.Komarova AV, Tchufistova LS, Supina EV, Boni IV (2002) Protein S1 counteracts the inhibitory effect of the extended Shine鈥揇algarno sequence on translation. RNA 8:1137鈥?147PubMedCentral PubMed
    28.Dunn JJ, Buzash-Pollert E, Studier FW (1978) Mutations of bacteriophage T7 that affect initiation of synthesis of the gene 0.3 protein. Proc Natl Acad Sci USA 75:2741鈥?745PubMedCentral PubMed
    29.Ohsawa H, Herrlich P, Gualerzi C (1984) In vitro template activity of 0.3 mRNA from wild type and initiation mutants of bacteriophage T7. Mol Gen Genet 196:53鈥?8PubMed
    30.Skorski P, Leroy P, Fayet O, Dreyfus M, Hermann-Le Denmat S (2006) The highly efficient translation initiation region from the Escherichia coli rpsA gene lacks a Shine鈥揇algarno element. J Bacteriol 188:6277鈥?285PubMedCentral PubMed
    31.Wagner LA, Gesteland RF, Dayhuff TJ, Weiss RB (1994) An efficient Shine鈥揇algarno sequence but not translation is necessary for lacZ mRNA stability in Escherichia coli. J Bacteriol 176:1683鈥?688PubMedCentral PubMed
    32.Joyce SA, Dreyfus M (1998) In the absence of translation, RNase E can bypass 5鈥?mRNA stabilizers in Escherichia coli. J Mol Biol 282:241鈥?54PubMed
    33.Komarova AV, Tchufistova LS, Dreyfus M, Boni IV (2005) AU-rich sequences within 5鈥?untranslated leaders enhance translation and stabilize mRNA in Escherichia coli. J Bacteriol 187:1344鈥?349PubMedCentral PubMed
    34.Larsen B, Wills NM, Gesteland RF, Atkins JF (1994) rRNA鈥搈RNA base pairing stimulates a programmed 鈭? ribosomal frameshift. J Bacteriol 176:6842鈥?851PubMedCentral PubMed
    35.Li GW, Oh E, Weissman JS (2012) The anti-Shine鈥揇algarno sequence drives translational pausing and codon choice in bacteria. Nature 484:538鈥?41PubMedCentral PubMed
    36.Moll I, Grill S, Gualerzi CO, Bl盲si U (2001) Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational control. Mol Microbiol 43:239鈥?46
    37.Grill S, Gualerzi CO, Londei P, Blaesi U (2000) Selective stimulation of translation of leaderless mRNA by IF2: evolutionary implications for translation. EMBO J 19:4101鈥?110PubMedCentral PubMed
    38.Grill S, Moll I, Hasen枚hrl D, Gualerzi CO, Bl盲si U (2001) Modulation of ribosomal recruitment to 5鈥?terminal start codons by translation initiation factors IF2 and IF3. FEBS Lett 495:167鈥?71PubMed
    39.Brock JE, Pourshahian S, Giliberti J, Limbach PA, Janssen GR (2008) Ribosomes bind leaderless mRNA in Escherichia coli through recognition of their 5鈥?terminal AUG. RNA 14:2159鈥?169PubMedCentral PubMed
    40.Giliberti J, O鈥橠onnell S, Etten WJ, Janssen GR (2012) A 5鈥?terminal phosphate is required for stable ternary complex formation and translation of leaderless mRNA in Escherichia coli. RNA 18:508鈥?18PubMedCentral PubMed
    41.Tedin K, Moll I, Resch A, Grill S, Graschopf A, Gualerzi CO, Bl盲si U (1999) Translation initiation factor 3 antagonizes authentic start codon selection on leaderless mRNAs. Mol Microbiol 31:67鈥?8PubMed
    42.Balakin AG, Skripkin EA, Shatsky IN, Bogdanov AA (1992) Unusual ribosome binding properties of mRNA encoding bacteriophage 位 repressor. Nucleic Acids Res 20:563鈥?71PubMedCentral PubMed
    43.O鈥橠onnell SM, Janssen GR (2002) Leaderless mRNAs bind 70S ribosomes more strongly than 30S ribosomal subunits in Escherichia coli. J Bacteriol 184:6730鈥?733PubMedCentral PubMed
    44.Moll I, Hirokawa G, Kiel MC, Kaji A, Bl盲si U (2004) Translation initiation with 70S ribosomes: an alternative pathway for leaderless mRNAs. Nucleic Acids Res 32:3354鈥?363PubMedCentral PubMed
    45.Boni IV, Isaeva DM, Musychenko ML, Tzareva NV (1991) Ribosome-messenger recognition: mRNA target sites for ribosomal protein S1. Nucleic Acids Res 19:155鈥?62PubMedCentral PubMed
    46.Stenstr枚m CM, Holmgren E, Isaksson LA (2001) Cooperative effects by the initiation codon and its flanking regions on translation initiation. Gene 273:259鈥?65PubMed
    47.Stenstr枚m CM, Isaksson LA (2002) Influences on translation initiation and early elongation by the messenger RNA region flanking the initiation codon at the 3鈥?side. Gene 288:1鈥?PubMed
    48.Sprengart ML, Fatscher HP, Fuchs E (1990) The initiation of translation in E. coli: apparent base pairing between the 16srRNA and downstream sequences of the mRNA. Nucleic Acids Res 18:1719鈥?723PubMedCentral PubMed
    49.O鈥機onnor M, Asai T, Squires CL, Dahlberg AE (1999) Enhancement of translation by the downstream box does not involve base pairing of mRNA with the penultimate stem sequence of 16S rRNA. Proc Natl Acad Sci USA 96:8973鈥?978PubMedCentral PubMed
    50.La Teana A, Brandi A, O鈥機onnor M, Freddi S, Pon CL (2000) Translation during cold adaptation does not involve mRNA鈥搑RNA base pairing through the downstream box. RNA 6:1393鈥?402PubMedCentral PubMed
    51.Sato T, Terabe M, Watanabe H, Gojobori T, Hori-Takemoto C, Miura K (2001) Codon and base biases after the initiation codon of the open reading frames in the Escherichia coli genome and their influence on the translation efficiency. J Biochem 29:851鈥?60
    52.Martin-Farmer J, Janssen GR (1999) A downstream CA repeat sequence increases translation from leadered and unleadered mRNA in Escherichia coli. Mol Microbiol 31:1025鈥?038PubMed
    53.Yusupova GZ, Yusupov MM, Cate JH, Noller HF (2001) The path of messenger RNA through the ribosome. Cell 106:233鈥?41PubMed
    54.Yusupova G, Jenner L, Rees B, Moras D, Yusupov M (2006) Structural basis for messenger RNA movement on the ribosome. Nature 444:391鈥?94PubMed
    55.Kaminishi T, Wilson DN, Takemoto C, Harms JM, Kawazoe M, Schluenzen F, Hanawa-Suetsugu K, Shirouzu M, Fucini P, Yokoyama S (2007) A snapshot of the 30S ribosomal subunit capturing mRNA via the Shine鈥揇algarno interaction. Structure 15:289鈥?97PubMed
    56.Korostelev A, Trakhanov S, Asahara H, Laurberg M, Lancaster L, Noller HF (2007) Interactions and dynamics of the Shine鈥揇algarno helix in the 70S ribosome. Proc Natl Acad Sci USA 104:16840鈥?6843PubMedCentral PubMed
    57.Uemura S, Dorywalska M, Lee TH, Kim HD, Puglisi JD, Chu S (2007) Peptide bond formation destabilizes Shine鈥揇algarno interaction on the ribosome. Nature 446:454鈥?57PubMed
    58.Takahashi S, Akita R, Furusawa H, Shimizu Y, Ueda T, Okahata Y (2006) Kinetic analysis of ribosome binding process onto mRNA using a quartz-crystal microbalance. Nucleic Acids Symp Ser 50:49鈥?0
    59.Canonaco MA, Gualerzi CO, Pon CL (1989) Alternative occupancy of a dual ribosomal binding site by mRNA affected by translation initiation factors. Eur J Biochem 182:501鈥?06PubMed
    60.La Teana A, Gualerzi CO, Brimacombe R (1995) From stand-by to decoding site. Adjustment of the mRNA on the 30S ribosomal subunit under the influence of the initiation factors. RNA 1:772鈥?82PubMedCentral PubMed
    61.de Smit MH, van Duin J (2003) Translational standby sites: how ribosomes may deal with the rapid folding kinetics of mRNA. J Mol Biol 331:737鈥?43PubMed
    62.Studer SM, Joseph S (2006) Unfolding of mRNA secondary structure by the bacterial translation initiation complex. Mol Cell 22:105鈥?15PubMed
    63.Sengupta J, Agrawal RK, Frank J (2001) Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA. Proc Natl Acad Sci USA 98:11991鈥?1996PubMedCentral PubMed
    64.Qu X, Lancaster L, Noller HF, Bustamante C, Tinoco I (2012) Ribosomal protein S1 unwinds double-stranded RNA in multiple steps. Proc Natl Acad Sci USA 109:14458鈥?4463PubMedCentral PubMed
    65.Rajbhandary UL, Chow CM (1995) Initiator tRNAs and initiation of protein synthesis. In: Soll D (ed) tRNA: structure, biosynthesis, and function. ASM Press, Washington, DC, pp 511鈥?28
    66.Mangroo D, Wu XQ, RajBhandary UL (1995) Escherichia coli initiator tRNA: structure鈥揻unction relationships and interactions with the translational machinery. Biochem Cell Biol 73:1023鈥?031PubMed
    67.Mayer C, Stortchevoi A, K枚hrer C, Varshney U, Rajbhandary UL (2001) Initiator tRNA and its role in initiation of protein synthesis. Cold Spring Harb Symp Quant 66:195鈥?06
    68.Lee CP, Dyson MR, Mandal N, Varshney U, Bahramian B, RajBhandary UL (1992) Striking effects of coupling mutations in the acceptor stem on recognition of tRNAs by Escherichia coli Met-tRNA synthetase and Met-tRNA transformylase. Proc Natl Acad Sci USA 89:9262鈥?266PubMedCentral PubMed
    69.Mechulam Y, Schmitt E, Maveyraud L, Zelwer C, Nureki O, Yokoyama S, Konno M, Blanquet S (1999) Crystal structure of E. coli methionyl-tRNA synthetase highlights: species-specific features. J Mol Biol 294:1287鈥?297PubMed
    70.Nakanishi K, Ogiso Y, Nakama T, Fukai S, Nureki O (2005) Structural basis for anticodon recognition by methiony-tRNA synthetase. Nat Struct Mol Biol 12:931鈥?32PubMed
    71.Selmer M, Dunham CM, Murphy FV 4th, Weixlbaumer A, Petry S, Kelley AC, Weir JR, Ramakrishnan V (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313:1935鈥?942PubMed
    72.Berk V, Zhang W, Pai RD, Cate JH (2006) Structural basis for mRNA and tRNA positioning on the ribosome. Proc Natl Acad Sci USA 103:15830鈥?5834PubMedCentral PubMed
    73.Schmitt E, Mechulam Y, Fromant M, Plateau P, Blanquet S (1997) Crystal structure at 1.2A resolution and active site mapping of Escherichia coli peptidyl-tRNA hydrolase. EMBO J 16:4760鈥?769PubMedCentral PubMed
    74.Guillon JM, Meinnel T, Mechulam Y, Lazennec C, Blanquet S, Fayat G (1992) Nucleotides of tRNA governing the specificity of Escherichia coli methionyl-tRNA(fMet) formyltransferase. J Mol Biol 224:359鈥?67PubMed
    75.Dutka S, Meinnel T, Lazennec C, Mechulam Y, Blanquet S (1993) Role of the 1-72 base pair in tRNAs for the activity of E. coli peptidyl-tRNA hydrolase. Nucleic Acids Res 21:4025鈥?030PubMedCentral PubMed
    76.Mayer C, RajBhandary UL (2002) Conformational change of Escherichia coli initiator methionyl-tRNA(fMet) upon binding to methionyl-tRNA formyl transferase. Nucleic Acids Res 30:2844鈥?850PubMedCentral PubMed
    77.Ramesh V, Mayer C, Dyson MR, Gite S, RajBhandary UL (1999) Induced fit of a peptide loop of methionyl-tRNA formyltransferase triggered by the initiator tRNA substrate. Proc Natl Acad Sci USA 96:875鈥?80PubMedCentral PubMed
    78.Guillon JM, Mechulam Y, Schmitter JM, Blanquet S, Fayat G (1992) Disruption of the gene for Met-tRNAfMet formyltransferase severely impairs growth of E. coli. J Bacteriol 174:4294鈥?301PubMedCentral PubMed
    79.Woo NH, Roe BA, Rich A (1980) Three-dimensional structure of Escherichia coli initiator tRNAfMet. Nature 286:346鈥?51PubMed
    80.Schweisguth DC, Moore PB (1997) On the conformation of the anticodon loops of initiator and elongator methionine tRNAs. J Mol Biol 267:505鈥?19PubMed
    81.Wrede P, Woo NH, Rich A (1979) Initiator tRNAs have a unique anticodon loop conformation. Proc Natl Acad Sci USA 76:3289鈥?293PubMedCentral PubMed
    82.Barraud P, Schmitt E, Mechulam Y, Dardel F, Tisne C (2008) A unique conformation of the anticodon stem-loop is associated with the capacity of tRNAfMet to initiate protein synthesis. Nucleic Acids Res 36:4894鈥?901PubMedCentral PubMed
    83.Sette M, van Tilborg P, Spurio R, Kaptain R, Paci M, Gualerzi CO, Boelens R (1997) The structure of the initiation factor IF1 from E. coli contains an oligomer-binding motif. EMBO J 16:1436鈥?443PubMedCentral PubMed
    84.Carter AP, Clemons WM Jr, Brodersen DE, Morgan-Warren RJ, Hartsch T, Wimberly BT, Ramakrishnan V (2001) Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 291:498鈥?01PubMed
    85.Moazed D, Samaha RR, Gualerzi C, Noller HF (1995) Specific protection of 16S rRNA by translational initiation factors. J Mol Biol 248:207鈥?10PubMed
    86.Gualerzi CO, Spurio R, La Teana A, Calogero R, Celano B, Pon CL (1989) Site-directed mutagenesis of Escherichia coli translation initiation factors. Identification of the amino acids involved in ribosomal binding and recycling of IF1. Protein Eng 3:133鈥?38PubMed
    87.Dahlquist KD, Puglisi JD (2000) Interaction of translation initiation factor IF1 with the E. coli ribosomal A site. J Mol Biol 299:1鈥?5PubMed
    88.Pon CL, Paci M, Pawlik RT, Gualerzi CO (1985) Structure鈥揻unction relationship in E. coli initiation factors. Biochemical and biophysical characterization of the interaction between IF2 and guanosine nucleotides. J Biol Chem 260:8918鈥?924PubMed
    89.Gualerzi CO, Severini M, Spurio R, La Teana A, Pon CL (1991) Molecular dissection of translation initiation factor IF2: evidence for two structural and functional domains. J Biol Chem 266:16356鈥?6362PubMed
    90.Lalami S, Putzer H, Plumbridge JA, Grunberg Manago M (1991) A severely truncated form of translation initiation factor 2 supports growth of Escherichia coli. J Mol Biol 220:335鈥?49
    91.Caserta E, Ferrara C, Milon P, Fabbretti A, Rocchetti A, Tomsic J, Pon CL, Gualerzi CO, La Teana A (2006) Translation initiation factor IF2 interacts with the 30S ribosomal subunit via two separate binding sites. J Mol Biol 362:787鈥?99PubMed
    92.Caserta E, Tomsic J, Spurio R, La Teana A, Pon CL, Gualerzi CO (2010) Ribosomal interaction of Bacillus stearothermophilus translation initiation factor IF2: characterization of the active sites. J Mol Biol 396:118鈥?29PubMed
    93.Wienk H, Tishchenko E, Belardinelli R, Tomaselli S, Dongre R, Spurio R, Folkers GE, Gualerzi CO, Boelens R (2012) Structural dynamics of bacterial translation initiation factor IF2. J Biol Chem 287:10922鈥?0932PubMedCentral PubMed
    94.Myasnikov AG, Marzi S, Simonetti A, Giuliodori AM, Gualerzi C, Yusupova G, Yusupov M, Klaholz BP (2005) Conformational transition of initiation factor 2 from the GTP- to GDP-state visualized on the ribosome. Nat Struct Mol Biol 12:1145鈥?149PubMed
    95.Simonetti A, Marzi S, Myasnikov AG, Yusupov M, Gualerzi CO, Klaholz BP (2008) Structure of a 30S ribosomal initiation complex. Nature 455:416鈥?20PubMed
    96.Simonetti A, Marzi S, Billas IM, Tsai A, Fabbretti A, Myasnikov AG, Roblin P, Vaiana AC, Hazemann I, Eiler D, Steitz TA, Puglisi JD, Gualerzi CO, Klaholz BP (2013) Involvement of protein IF2 N-domain in ribosomal subunit joining revealed from architecture and function of the full-length initiation factor. Proc Natl Acad Sci USA 110:15656鈥?5661PubMedCentral PubMed
    97.Misselwitz R, Welfle K, Kraft C, Gualerzi CO, Welfle H (1997) Translational initiation factor IF2 from Bacillus stearothermophilus. A spectroscopic and microcalorimetric study of the C-domain. Biochemistry 36:3170鈥?178PubMed
    98.Spurio R, Brandi L, Caserta E, Pon CL, Gualerzi CO, Misselwitz R, Krafft C, Welfle K, Welfle H (2000) The C-terminal sub-domain (IF2 C-2) contains the entire fMet-tRNA binding site of initiation factor IF2. J Biol Chem 275:2447鈥?454PubMed
    99.Guenneugues M, Meunier S, Boelens R, Caserta E, Brandi L, Spurio R, Pon CL, Gualerzi CO (2000) Mapping the fMet-tRNA binding site of initiation factor IF2. EMBO J 19:5233鈥?249PubMedCentral PubMed
    100.Roll-Mecak A, Cao C, Dever TE, Burley SK (2000) X-ray structures of the universal translation initiation factor IF2/eIF5B: conformational changes on GDP and GTP binding. Cell 103:781鈥?92PubMed
    101.Allen GS, Zavialov A, Gursky R, Ehrenberg M, Frank J (2005) The cryo-EM structure of a translation initiation complex from Escherichia coli. Cell 121:703鈥?12PubMed
    102.Marzi S, Knight W, Brandi L, Caserta E, Soboleva N, Hill WE, Gualerzi CO, Lodmell JS (2003) Ribosomal localization of translation initiation factor IF2. RNA 9:958鈥?69PubMedCentral PubMed
    103.Laursen BS, Mortensen KK, Sperling-Petersen HU, Hoffman DW (2003) A conserved structural motif at the N terminus of bacterial translation initiation factor IF2. J Biol Chem 278:16320鈥?6328PubMed
    104.Laursen BS, Kjaergaard AC, Mortensen KK, Hoffman DW, Sperling-Petersen HU (2004) The N-terminal domain (IF2 N) of bacterial translation initiation factor IF2 is connected to the conserved C-terminal domains by a flexible linker. Protein Sci 13:230鈥?39PubMedCentral PubMed
    105.Wienk H, Tomaselli S, Bernard C, Spurio R, Picone D, Gualerzi CO, Boelens R (2005) Solution structure of the C1-subdomain of Bacillus stearothermophilus translation initiation factor IF2. Protein Sci 14:2461鈥?468PubMedCentral PubMed
    106.Meunier S, Spurio R, Czisch M, Wechselberger R, Guenneugues M, Gualerzi CO, Boelens R (2000) Structure of the fMet-tRNAfMet-binding domain of B. stearothermophilus initiation factor IF2. EMBO J 19:1918鈥?926PubMedCentral PubMed
    107.Simonetti A, Marzi S, Fabbretti A, Hazemann I, Jenner L, Urzhumtsev A, Gualerzi CO, Klaholz BP (2013) Structure of the protein core of translation initiation factor 2 in apo, GTP-bound and GDP-bound forms. Acta Crystallogr D Biol Crystallogr 69:925鈥?33PubMedCentral PubMed
    108.Eiler D, Lin J, Simonetti A, Klaholz BP, Steitz TA (2013) Initiation factor 2 crystal structure reveals a different domain organization from eukaryotic initiation factor 5B and mechanism among translational GTPases. Proc Natl Acad Sci USA 110:15662鈥?5667PubMedCentral PubMed
    109.Martintchev A, Kolupaeva VG, Pestova TV, Wagner G (2003) Mapping the binding interface between human eukaryotic initiation factors 1A and 5B. Proc Natl Acad Sci USA 100:1535鈥?540
    110.Kapralou S, Fabbretti A, Garulli C, Spurio R, Gualerzi CO, Dahlberg AE, Pon CL (2008) Translation initiation factor IF1 of Bacillus stearothermophilus and Thermus thermophilus substitute for Escherichia coli IF1 in vivo and in vitro without a direct IF1鈥揑F2 interaction. Mol Microbiol 70:1368鈥?377PubMedCentral PubMed
    111.Juli谩n P, Milon P, Agirrezabala X, Lasso G, Gil D, Rodnina MV, Valle M (2011) The Cryo-EM structure of a complete 30S translation initiation complex from Escherichia coli. PLoS Biol 9(7):e1001095PubMedCentral PubMed
    112.Szkaradkiewicz K, Zuleeg T, Limmer S, Sprinzl M (2000) Interaction of fMet-tRNAfMet and fMet-AMP with the C-terminal domain of Thermus thermophilus translation initiation factor 2. Eur J Biochem 267:4290鈥?299PubMed
    113.Biou V, Shu F, Ramakrishnan V (1995) X-ray crystallography shows that translational initiation factor IF3 consists of two compact alpha/beta domains linked by an alpha-helix. EMBO J 14:4056鈥?064PubMedCentral PubMed
    114.Garcia C, Fortier PL, Blanquet S, Lallemand JY, Dardel F (1995) 1H and 15N resonance assignments and structure of the N-terminal domain of Escherichia coli initiation factor 3. Eur J Biochem 228:395鈥?02PubMed
    115.Garcia C, Fortier PL, Blanquet S, Lallemand JY, Dardel F (1995) Solution structure of the ribosome-binding domain of E. coli translation initiation factor IF3. Homology with the U1A protein of the eukaryotic spliceosome. J Mol Biol 254:247鈥?59PubMed
    116.Moreau M, de Cock E, Fortier PL, Garcia C, Albaret C, Blanquet S, Lallemand JY, Dardel F (1997) Heteronuclear NMR studies of E. coli translation initiation factor IF3. Evidence that the inter-domain region is disordered in solution. J Mol Biol 266:15鈥?2PubMed
    117.de Cock E, Springer M, Dardel F (1999) The interdomain linker of Escherichia coli initiation factor IF3: a possible trigger of translation initiation specificity. Mol Microbiol 32:193鈥?02PubMed
    118.Mil贸n P, Tischenko E, Tom拧i膷 J, Caserta E, Folkers G, La Teana A, Rodnina MV, Pon CL, Boelens R, Gualerzi CO (2006) The nucleotide binding site of bacterial translation initiation factor IF2 as a metabolic sensor. Proc Natl Acad Sci USA 103:13962鈥?3967PubMedCentral PubMed
    119.Hauryliuk V, Mitkevich VA, Draycheva A, Tankov S, Shyp V, Ermakov A, Kulikova AA, Makarov AA, Ehrenberg M (2009) Thermodynamics of GTP and GDP binding to bacterial initiation factor 2 suggests two types of structural transitions. J Mol Biol 394:621鈥?26PubMed
    120.Mitkevich VA, Ermakov A, Kulikova AA, Tankov S, Shyp V, Soosaar A, Tenson T, Makarov AA, Ehrenberg M, Hauryliuk V (2010) Thermodynamic characterization of ppGpp binding to EF-G or IF2 and of initiator tRNA binding to free IF2 in the presence of GDP, GTP, or ppGpp. J Mol Biol 402:838鈥?46PubMed
    121.Canonaco MA, Calogero RA, Gualerzi CO (1986) Mechanism of translational initiation in prokaryotes. Evidence for a direct effect of IF2 on the activity of the 30S ribosomal subunit. FEBS Lett 207:198鈥?04PubMed
    122.La Teana A, Pon CL, Gualerzi CO (1996) Late events in translation initiation. The adjustment of fMet-tRNA in the ribosomal P-site. J Mol Biol 256:667鈥?75PubMed
    123.Luchin S, Putzer H, Hershey JW, Cenatiempo Y, Grunberg-Manago M, Laalami S (1999) In vitro study of two dominant inhibitory GTPase mutants of Escherichia coli translation initiation factor IF2. Direct evidence that GTP hydrolysis is necessary for factor recycling. J Biol Chem 274:6074鈥?079PubMed
    124.Tomsic J, Vitali LA, Daviter T, Savelsbergh A, Spurio R, Striebeck P, Wintermeyer W, Rodnina MV, Gualerzi CO (2000) Late events of translation initiation in bacteria: a kinetic analysis. EMBO J 19:2127鈥?136PubMedCentral PubMed
    125.Antoun A, Pavlov MY, Andersson K, Tenson T, Ehrenberg M (2003) The roles of initiation factor 2 and guanosine triphosphate in initiation of protein synthesis. EMBO J 22:5593鈥?601PubMedCentral PubMed
    126.Soffientini A, Lorenzetti R, Gastaldo L, Parlett JH, Spurio R, La Teana A, Islam K (1994) Purification procedure for bacterial translational initiation factors IF2 and IF3. Protein Expr Purif 5:118鈥?24PubMed
    127.Steffensen S, Poulsen AB, Mortensen KK, Korsager B, Sperling-Petersen HU (1994) Protease activity of outer membrane protein OmpT in clinical E. coli isolates鈥攕tudies using translation initiation factor IF2 as target protein. Biochem Mol Biol Int 34:1245鈥?251PubMed
    128.Fabbretti A, Brandi L, Milon P, Spurio R, Pon CL, Gualerzi CO (2012) Translation initiation without IF2-dependent GTP hydrolysis. Nucleic Acids Res 40:7946鈥?955PubMedCentral PubMed
    129.Severini M, Choli T, La Teana A, Gualerzi CO (1990) Proteolysis of Bacillus stearothermophilus IF2 and specific protection by GTP. FEBS Lett 276:14鈥?6PubMed
    130.Cornish PV, Ermolenko DN, Noller HF, Ha T (2008) Spontaneous intersubunit rotation in single ribosomes. Mol Cell 30:578鈥?88PubMedCentral PubMed
    131.Frank J, Gonzalez RL Jr (2010) Structure and dynamics of a processive Brownian motor: the translating ribosome. Annu Rev Biochem 79:381鈥?12PubMedCentral PubMed
    132.Grigoriadou C, Marzi S, Kirillov S, Gualerzi CO, Cooperman BS (2007) A qualitative kinetic scheme for 70S initiation complex formation. J Mol Biol 373:562鈥?72PubMedCentral PubMed
    133.Grunberg-Manago M (1980) Initiation of protein synthesis as seen in 1979. In: Chambliss G, Craven CR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosome鈥攕tructure, function, and genetics. University Park Press, Baltimore, pp 445鈥?77
    134.Gualerzi C, Risuleo G, Pon CL (1977) Initial rate kinetic analysis of the mechanism of initiation complex formation and the role of initiation factor IF3. Biochemistry 16:1684鈥?689PubMed
    135.Philippe C, Eyermann F, B茅nard L, Portier C, Ehresmann B, Ehresmann C (1993) Ribosomal protein S15 from Escherichia coli modulates its own translation by trapping the ribosome on the mRNA initiation loading site. Proc Natl Acad Sci USA 90:4394鈥?398PubMedCentral PubMed
    136.Marzi S, Myasnikov AG, Serganov A, Ehresmann C, Romby P, Yusupov M, Klaholz BP (2007) Structured mRNAs regulate translation initiation by binding to the platform of the ribosome. Cell 130:1019鈥?031PubMed
    137.Brandi L, Fabbretti A, La Teana A, Abbondi M, Losi D, Donadio S, Gualerzi CO (2006) Specific, efficient, and selective inhibition of prokaryotic translation initiation by a novel peptide antibiotic. Proc Natl Acad Sci USA 103:39鈥?4PubMedCentral PubMed
    138.Gualerzi CO, Giuliodori AM, Brandi A, Di Pietro F, Piersimoni L, Fabbretti A, Pon CL (2011) Translation initiation at the root of the cold-shock translational bias. In: Rodnina M, Wintermeyer W, Green R (eds) Ribosomes鈥攕tructure, function, and dynamics. Springer, Wien, pp 143鈥?54
    139.Milon P, Carotti M, Konevega AL, Wintermeyer W, Rodnina MV, Gualerzi CO (2010) The ribosome-bound initiation factor 2 recruits initiator tRNA to the 30S initiation complex. EMBO Rep 11:312鈥?16PubMedCentral PubMed
    140.Risuleo G, Gualerzi C, Pon C (1976) Specificity and properties of the destabilization, induced by initiation factor IF3, of ternary complexes of the 30-S ribosomal subunit, aminoacyl-tRNA and polynucleotides. Eur J Biochem 67:603鈥?13PubMed
    141.La Teana A, Pon CL, Gualerzi CO (1993) Translation of mRNAs with degenerate initiation triplet AUU displays high IF2 dependence and is subject to IF3 repression. Proc Natl Acad Sci USA 90:4161鈥?165PubMedCentral PubMed
    142.Meinnel T, Sacerdot C, Graffe M, Blanquet S, Springer M (1999) Discrimination by Escherichia coli initiation factor IF3 against initiation on non-canonical codons relies on complementarity rules. J Mol Biol 290:825鈥?37PubMed
    143.Hartz D, McPheeters DS, Gold L (1989) Selection of the initiator tRNA by Escherichia coli initiation factors. Genes Dev 3:1899鈥?912PubMed
    144.Grigoriadou C, Marzi S, Pan D, Gualerzi CO, Cooperman BS (2007) The translational fidelity function of IF3 during transition from the 30S initiation complex to the 70S initiation complex. J Mol Biol 373:551鈥?61PubMedCentral PubMed
    145.Gualerzi CO, Wintermeyer W (1986) Prokaryotic initiation factor 2 acts at the level of the 30S ribosomal subunit. A fluorescence stopped-flow study. FEBS Lett 202:1鈥?
    146.Tsai A, Petrov A, Marshall RA, Korlach J, Uemura S, Puglisi JD (2012) Heterogeneous pathways and timing of factor departure during translation initiation. Nature 487:390鈥?94PubMedCentral PubMed
    147.Milon P, Maracci C, Filonava L, Gualerzi CO, Rodnina MV (2012) Real-time assembly landscape of bacterial 30S translation initiation complex. Nat Struct Mol Biol 19:609鈥?15PubMed
    148.Masuda T, Petrov AN, Iizuka R, Funatsu T, Puglisi JD, Uemura S (2012) Initiation factor 2, tRNA, and 50S subunits cooperatively stabilize mRNAs on the ribosome during initiation. Proc Natl Acad Sci USA 109:4881鈥?885PubMedCentral PubMed
    149.Antoun A, Pavlov MY, Tenson T, Ehrenberg M (2004) Ribosome formation from subunits studied by stopped-flow and Rayleigh light scattering. Biol Proced Online 6:35鈥?4PubMedCentral PubMed
    150.Qin H, Grigoriadou C, Cooperman BS (2009) IF2 Interaction with the ribosomal GTPase-associated center during 70S initiation complex formation. Biochemistry 48:4699鈥?706PubMedCentral PubMed
    151.Antoun A, Pavlov MY, Lovmar M, Ehrenberg M (2006) How initiation factors tune the rate of initiation of protein synthesis in bacteria. EMBO J 25:2539鈥?550PubMedCentral PubMed
    152.Marshall RA, Aitken CE, Puglisi JD (2009) GTP hydrolysis by IF2 guides progression of the ribosome into elongation. Mol Cell 35:37鈥?7PubMedCentral PubMed
    153.MacDougall DD, Gonzalez RL Jr (2015) Translation initiation factor 3 regulates switching between different modes of ribosomal subunit joining. J Mol Biol 427:1801鈥?818PubMed
    154.Wang J, Caban K, Gonzalez RL Jr (2015) Ribosomal initiation complex-driven changes in the stability and dynamics of initiation factor 2 regulate the fidelity of translation initiation. J Mol Biol 427:1819鈥?834PubMed
    155.La Teana A, Gualerzi CO, Dahlberg AE (2001) Initiation factor IF2 binds to the alpha-sarcin loop and helix 89 of E. coli 23S ribosomal RNA. RNA 7:1173鈥?179PubMedCentral PubMed
    156.Brandi L, Marzi S, Fabbretti A, Fleischer C, Hill W, Gualerzi CO, Lodmell JS (2004) The translation initiation functions of IF2: targets for thiostrepton inhibition. J Mol Biol 335:881鈥?94PubMed
    157.Mitkevich VA, Shyp V, Petrushanko IY, Soosaar A, Atkinson GC, Tenson T, Makarov AA, Hauryliuk V (2012) GTPases IF2 and EF-G bind GDP and the SRL RNA in a mutually exclusive manner. Sci Rep 2:843PubMedCentral PubMed
    158.Pape T, Wintermeyer W, Rodnina MV (1998) Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. EMBO J 17:7490鈥?497PubMedCentral PubMed
    159.Sette M, Spurio R, van Tilborg P, Gualerzi CO, Boelens R (1999) Identification of the ribosome binding sites of translation initiation factor IF3 by multidimensional heteronuclear NMR spectroscopy. RNA 5:82鈥?2PubMedCentral PubMed
    160.Fabbretti A, Pon CL, Hennelly SP, Hill WE, Lodmell JS, Gualerzi CO (2007) The real time path of IF3 onto and off the ribosome. Mol Cell 25:285鈥?96PubMed
    161.Hennelly SP, Antoun A, Ehrenberg M, Gualerzi CO, Knight W, Lodmell JS, Hill WE (2005) A time-resolved investigation of ribosomal subunit association. J Mol Biol 346:1243鈥?258PubMed
    162.McCutcheon JP, Agrawal RK, Philips SM, Grassucci RA, Gerchman SE, Clemons WM Jr, Ramakrishnan V, Frank J (1999) Location of translational initiation factor IF3 on the small ribosomal subunit. Proc Natl Acad Sci USA 96:4301鈥?306PubMedCentral PubMed
    163.Pioletti M, Schl眉nzen F, Harms J, Zarivach R, Gl眉hmann M, Avila H, Bashan A, Bartels H, Auerbach T, Jacobi C, Hartsch T, Yonath A, Franceschi F (2001) Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J 20:1829鈥?839PubMedCentral PubMed
    164.Guo Z, Noller HF (2012) Rotation of the head of the 30S ribosomal subunit during mRNA translocation. Proc Natl Acad Sci USA 109:20391鈥?0394PubMedCentral PubMed
    165.Dallas A, Noller HF (2001) Interaction of translation initiation factor 3 with the 30S ribosomal subunit. Mol Cell 8:855鈥?64PubMed
    166.Petrelli D, La Teana A, Galofaro C, Spurio R, Pon CL, Gualerzi CO (2001) Translation initiation factor IF3: two domains, five functions one mechanism. EMBO J 20:4560鈥?569PubMedCentral PubMed
    167.Petrelli D, Garofalo C, Lammi M, Spurio R, Pon CL, Gualerzi CO, La Teana A (2003) Mapping the active sites of bacterial translation initiation factor IF3. J Mol Biol 331:541鈥?56PubMed
    168.Lancaster L, Noller HF (2005) Involvement of 16S rRNA nucleotides G1338 and A1339 in discrimination of initiator tRNA. Mol Cell 20:623鈥?63PubMed
    169.Shoji S, Abdi NM, Bundschuh R, Fredrick K (2009) Contribution of ribosomal residues to P-site tRNA binding. Nucleic Acids Res 37:4033鈥?042PubMedCentral PubMed
    170.Qin D, Abdi NM, Fredrick K (2007) Characterization of 16S rRNA mutations that decrease the fidelity of translation initiation. RNA 13:2348鈥?455PubMedCentral PubMed
    171.Hartz D, Binkley J, Hollingsworth T, Gold L (1990) Domains of initiator tRNA and initiation codon crucial for initiator tRNA selection by Escherichia coli IF3. Genes Dev 4:1790鈥?800PubMed
    172.Qin D, Fredrick K (2009) Control of translation initiation involves a factor-induced rearrangement of helix 44 of 16S ribosomal RNA. Mol Microbiol 71:1239鈥?249PubMedCentral PubMed
    173.Qin D, Liu Q, Devaraj A, Fredrick K (2012) Role of helix 44 of 16S rRNA in the fidelity of translation initiation. RNA 18:485鈥?95PubMedCentral PubMed
    174.Pon CL, Gualerzi C (1974) Effect of initiation factor 3 binding on the 30S ribosomal subunits of Escherichia coli. Proc Natl Acad Sci USA 71:4950鈥?954PubMedCentral PubMed
    175.Shapkina TG, Dolan MA, Babin P, Wollenzien P (2000) Initiation factor 3-induced structural changes in the 30S ribosomal subunit and in complexes containing tRNAfMet and mRNA. J Mol Biol 299:615鈥?28PubMed
    176.van der Hofstad GA, Buitenhek A, Bosch L, Voorma HO (1978) Initiation factor IF3 and the binary complex between initiation factor IF2 and formylmethionyl-tRNA are mutually exclusive on the 30S ribosomal subunit. Eur J Biochem 89:213鈥?20PubMed
    177.Lammi M, Pon CL, Gualerzi CO (1987) The NH2-terminal cleavage of Escherichia coli translational initiation factor IF3. A mechanism to control the intracellular level of the factor? FEBS Lett 215:115鈥?21PubMed
    178.Pon CL, Gualerzi CO (1986) Mechanism of translational initiation in prokaryotes. IF3 is released from ribosomes during and not before 70S initiation complex formation. FEBS Lett 195:15鈥?19
    179.Celano B, Pawlik RT, Gualerzi CO (1988) Interaction of Escherichia coli translation-initiation factor IF1 with ribosomes. Eur J Biochem 178:351鈥?55PubMed
    180.Kaleta C, Sch盲uble S, Rinas U, Schuster S (2013) Metabolic costs of amino acid and protein production in Escherichia coli. Biotechnol J 8:1105鈥?114PubMed
    181.Li GW, Burkhardt D, Gross C, Weissman JS (2014) Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157:624鈥?35PubMedCentral PubMed
    182.Ron EZ, Davis BD (1971) Growth rate of Escherichia coli at elevated temperatures: limitation by methionine. J Bacteriol 107:391鈥?96PubMedCentral PubMed
    183.Debenham PG, Pongs O, Travers AA (1980) Formylmethionyl-tRNA alters RNA polymerase specificity. Proc Natl Acad Sci USA 77:870鈥?74PubMedCentral PubMed
    184.Travers AA, Debenham PG, Pongs O (1980) Translation initiation factor 2 alters transcriptional selectivity of Escherichia coli ribonucleic acid polymerase. Biochemistry 19:1651鈥?656PubMed
  • 作者单位:Claudio O. Gualerzi (1)
    Cynthia L. Pon (1)

    1. Laboratory of Genetics, University of Camerino, 62032, Camerino, Italy
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Biomedicine
    Life Sciences
    Biochemistry
  • 出版者:Birkh盲user Basel
  • ISSN:1420-9071
文摘
Initiation of mRNA translation is a major checkpoint for regulating level and fidelity of protein synthesis. Being rate limiting in protein synthesis, translation initiation also represents the target of many post-transcriptional mechanisms regulating gene expression. The process begins with the formation of an unstable 30S pre-initiation complex (30S pre-IC) containing initiation factors (IFs) IF1, IF2 and IF3, the translation initiation region of an mRNA and initiator fMet-tRNA whose codon and anticodon pair in the P-site following a first-order rearrangement of the 30S pre-IC produces a locked 30S initiation complex (30SIC); this is docked by the 50S subunit to form a 70S complex that, following several conformational changes, positional readjustments of its ligands and ejection of the IFs, becomes a 70S initiation complex productive in initiation dipeptide formation. The first EF-G-dependent translocation marks the beginning of the elongation phase of translation. Here, we review structural, mechanistic and dynamical aspects of this process. Keywords Protein synthesis Translation initiation factors mRNA initiation region fMet-tRNA GTP

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700