Light induced transmembrane proton gradient in artificial lipid vesicles reconstituted with photosynthetic reaction centers
详细信息    查看全文
  • 作者:Francesco Milano (1)
    Massimo Trotta (1) m.trotta@ba.ipcf.cnr.it
    Márta Dorogi (2)
    Béla Fischer (2)
    Livia Giotta (3)
    Angela Agostiano (4)
    Péter Maróti (2)
    László Kálmán (5)
    László Nagy (2)
  • 关键词:Reaction centers – Proton motive force – Ionophores – Pyranine
  • 刊名:Journal of Bioenergetics and Biomembranes
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:44
  • 期:3
  • 页码:373-384
  • 全文大小:381.2 KB
  • 参考文献:1. Agostiano A, Mavelli F, Milano F, Giotta L, Trotta M, Nagy L et al (2004) pH-sensitive fluorescent dye as probe for proton uptake in photosynthetic reaction centers. Bioelectrochemistry 63(1–2):125–128
    2. Allen JP, Williams JC (1998) Photosynthetic reaction centers. FEBS Lett 438(1–2):5–9
    3. Barlic A, Gutierrez-Aguirre I, Caaveiro JM, Cruz A, Ruiz-Arguello MB, Perez-Gil J et al (2004) Lipid phase coexistence favors membrane insertion of equinatoxin-II, a pore-forming toxin from Actinia equina. J Biol Chem 279(33):34209–34216
    4. Blankenship RE, Madigan TM, Bauer CE (eds) (1995) Anoxygenic photosynthetic bacteria (advances in photosynthesis). Kluwer Academic Publishers, Dordrecht
    5. Brzustowicz MR, Cherezov V, Caffrey M, Stillwell W, Wassall SR (2002) Molecular organization of cholesterol in polyunsaturated membranes: microdomain formation. Biophys J 82(1 Pt 1):285–298
    6. de Almeida RF, Loura LM, Fedorov A, Prieto M (2005) Lipid rafts have different sizes depending on membrane composition: a time-resolved fluorescence resonance energy transfer study. J Mol Biol 346(4):1109–1120
    7. Deamer DW, Harang E (1990) Light-dependent pH gradients are generated in liposomes containing ferrocyanide. Biosystems 24(1):1–4
    8. Deamer DW, Nichols JW (1989) Proton flux mechanisms in model and biological membranes. J Membr Biol 107(2):91–103
    9. Donohue TJ, Cain BD, Kaplan S (1982) Alteration in the phospholipid composition of Rhodopseudomans sphaeroides and other bacteria induced by Tris. J Bacteriol 152:595–606
    10. Duan L, Qi W, Yan X, He Q, Cui Y, Wang K et al (2009) Proton gradients produced by glucose oxidase microcapsules containing motor F0F1-ATPase for continuous ATP biosynthesis. J Phys Chem B 113(2):395–399
    11. Faxen K, Brzezinski P (2007) The inside pH determines rates of electron and proton transfer in vesicle-reconstituted cytochrome c oxidase. Biochim Biophys Acta 1767(5):381–386. doi:
    12. Filizola M, Wang SX, Weinstein H (2006) Dynamic models of G-protein coupled receptor dimers: indications of asymmetry in the rhodopsin dimer from molecular dynamics simulations in a POPC bilayer. J Comput Aided Mol Des 20(7–8):405–416
    13. Gensure RH, Zeidel ML, Hill WG (2006) Lipid raft components cholesterol and sphingomyelin increase H+/OH- permeability of phosphatidylcholine membranes. Biochem J 398(3):485–495
    14. Gutknecht J (1987) Proton/hydroxide conductance and permeability through phospholipid bilayer membranes. Proc Natl Acad Sci U S A 84(18):6443–6446
    15. Hauska G, Samoray D, Orlich G, Nelson N (1980) Reconstitution of photosynthetic energy conservation. II. Photophosphorylation in liposomes containing photosystem-I reaction center and chloroplast coupling-factor complex. Eur J Biochem 111(2):535–543
    16. Hellingwerf KJ (1987) Reaction centers from Rhodopseudomonas sphaeroides in reconstituted phospholipid vesicles. I. Structural studies. J Bioenerg Biomembr 19(3):203–223
    17. Henriksen J, Rowat AC, Brief E, Hsueh YW, Thewalt JL, Zuckermann MJ et al (2006) Universal behavior of membranes with sterols. Biophys J 90(5):1639–1649
    18. Holoubek A, Vecer J, Sigler K (2007) Monitoring of the proton electrochemical gradient in reconstituted vesicles: quantitative measurements of both transmembrane potential and intravesicular pH by ratiometric fluorescent probes. J Fluoresc 17(2):201–213
    19. Kahya N, Schwille P (2006) How phospholipid-cholesterol interactions modulate lipid lateral diffusion, as revealed by fluorescence correlation spectroscopy. J Fluoresc 16(5):671–678
    20. Kalman L, Gajda T, Sebban P, Maroti P (1997) pH-metric study of reaction centers from photosynthetic bacteria in micellular solutions: protonatable groups equilibrate with the aqueous bulk phase. Biochemistry 36(15):4489–4496
    21. Kano K, Fendler JH (1978) Pyranine as a sensitive pH probe for liposome interiors and surfaces. pH gradients across phospholipid vesicles. Biochim Biophys Acta 509(2):289–299
    22. Katona G, Andreasson U, Landau EM, Andreasson LE, Neutze R (2003) Lipidic cubic phase crystal structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.35A resolution. J Mol Biol 331(3):681–692
    23. Krishnamoorthy I, Krishnamoorthy G (2001) Probing the link between proton transport and water content in lipid membranes. J Phys Chem B 105:1484–1488
    24. Lande MB, Donovan JM, Zeidel ML (1995) The relationship between membrane fluidity and permeabilities to water, solutes, ammonia, and protons. J Gen Physiol 106(1):67–84
    25. Milano F, Gerencser L, Agostiano A, Nagy L, Trotta M, Maroti P (2007) Mechanism of quinol oxidation by ferricenium produced by light excitation in reaction centers of photosynthetic bacteria. J Phys Chem B 111(16):4261–4270
    26. Milano F, Italiano F, Agostiano A, Trotta M (2009) Characterisation of RC-proteoliposomes at different RC/lipid ratios. Photosynth Res 100(2):107–112. doi:
    27. Molenaar D, Crielaard W, Hellingwerf KJ (1988) Characterization of protonmotive force generation in liposomes reconstituted from phosphatidylethanolamine, reaction centers with light-harvesting complexes isolated from Rhodopseudomonas palustris. Biochemistry 27(6):2014–2023. doi:
    28. Nagy L, Fodor E, Farkas T, Gedey S, Kecskes A (1999) Lipids effect the charge stabilisation in wild type and mutant reaction centres of photosynthetic bacteria Rhodobacter sphaeroides. Aust J Plant Physiol 25:465–473
    29. Okamura MY, Paddock ML, Graige MS, Feher G (2000) Proton and electron transfer in bacterial reaction centers. Biochim Biophys Acta 1458(1):148–163
    30. Onishi JC, Niederman RA (1982) Rhodopseudomonas sphaeroides membranes: alterations in phospholipid composition in aerobically and phototrophically grown cells. J Bacteriol 149(3):831–839
    31. Osvath S, Maroti P (1997) Coupling of cytochrome and quinone turnovers in the photocycle of reaction centers from the photosynthetic bacterium Rhodobacter sphaeroides. Biophys J 73(2):972–982
    32. Paddock ML, Feher G, Okamura MY (2003) Proton transfer pathways and mechanism in bacterial reaction centers. FEBS Lett 555(1):45–50
    33. Pandit SA, Chiu SW, Jakobsson E, Grama A, Scott HL (2007) Cholesterol surrogates: a comparison of cholesterol and 16:0 ceramide in POPC bilayers. Biophys J 92(3):920–927
    34. Petrova IO, Kurashov VN, Semenov AY, Mamedov MD (2011) Manganese-depleted/reconstituted photosystem II core complexes in solution and liposomes. J Photochem Photobiol B 104(1–2):372–376
    35. Pilotelle-Bunner A, Beaunier P, Tandori J, Maroti P, Clarke RJ, Sebban P (2009) The local electric field within phospholipid membranes modulates the charge transfer reactions in reaction centres. Biochim Biophys Acta 1787(8):1039–1049
    36. Riegler J, Mohwald H (1986) Elastic interactions of photosynthetic reaction center proteins affecting phase transitions and protein distributions. Biophys J 49(6):1111–1118
    37. Sebban P, Maroti P, Hanson DK (1995) Electron and proton transfer to the quinones in bacterial photosynthetic reaction centers: insight from combined approaches of molecular genetics and biophysics. Biochimie 77(7–8):677–694
    38. Shinkarev VP, Wraight CA (1993) Electron and proton transfer in the acceptor quinone complex of reaction centres of phototrophic bacteria. In: Deisenhofer J, Norris JR (eds) The photosynthetic reaction center. Academic, San Diego, pp 193–255
    39. Steiner S, Sejka GA, Conti SF, Gest H, Lester RL (1970) Modification of membrane composition in growing photosynthetic bacteria. Biochim Biophys Acta 203(3):571–574
    40. Tandori J, Nagy L, Puskás á, Droppa M, Horváth G, Maróti P (1995) The IleL229 → Met mutation impairs the quinone binding to the QB-pocket in reaction centers of Rhodobacter sphaeroides. Photosynth Res 45(2):135–146
    41. Telford JE, Kilbride SM, Davey GP (2010) Decylubiquinone increases mitochondrial function in synaptosomes. J Biol Chem 285(12):8639–8645
    42. Thewalt JL, Bloom M (1992) Phosphatidylcholine: cholesterol phase diagrams. Biophys J 63(4):1176–1181
    43. Trotta M, Milano F, Nagy L, Agostiano A (2002) Response of membrane protein to the environment: the case of photosynthetic reaction centre. Mater Sci Eng C 22(2):263–267
    44. van Rotterdam BJ, Westerhoff HV, Visschers RW, Bloch DA, Hellingwerf KJ, Jones MR et al (2001) Pumping capacity of bacterial reaction centers and backpressure regulation of energy transduction. Eur J Biochem 268(4):958–970
    45. Wardak A, Brodowski R, Krupa Z, Gruszecki WI (2000) Effect of light-harvesting complex II on ion transport across model lipid membranes. J Photochem Photobiol B 56(1):12–18
    46. Wiedenmann A, Dimroth P, von Ballmoos C (2008) Deltapsi and DeltapH are equivalent driving forces for proton transport through isolated F(0) complexes of ATP synthases. Biochim Biophys Acta 1777(10):1301–1310
    47. Wood BJB, Nichols BW, James AT (1965) The lipids and fatty acid metabolism of photosynthetic bacteria. Biochim Biophys Acta 106:261–273
    48. Wraight CA (2004) Proton and electron transfer in the acceptor quinone complex of photosynthetic reaction centers from Rhodobacter sphaeroides. Front Biosci 9:309–337
    49. Yang Z, Su X, Wu F, Gong Y, Kuang T (2005) Photochemical activities of plant photosystem I particles reconstituted into phosphatidylglycerol liposomes. J Photochem Photobiol B 78(2):125–134
  • 作者单位:1. Institute for Physical and Chemical Processes (IPCF), Bari division, Italian National Research Council (CNR), Via Orabona 4, 70126 Bari, Italy2. Institute of Medical Physics and Informatics, University of Szeged, Rerrich B. tér 1, 6720 Szeged, Hungary3. Department of Material Sciences, University of Salento, Strada per Monteroni, 73100 Lecce, Italy4. Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy5. Department of Physics, Concordia University, Montreal, QC, Canada
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Biochemistry
    Animal Anatomy, Morphology and Histology
    Animal Biochemistry
    Organic Chemistry
  • 出版者:Springer New York
  • ISSN:1573-6881
文摘
Photosynthetic reaction center (RC) is the minimal nanoscopic photoconverter in the photosynthetic membrane that catalyzes the conversion of solar light to energy readily usable for the metabolism of the living organisms. After electronic excitation the energy of light is converted into chemical potential by the generation of a charge separated state accompanied by intraprotein and ultimately transmembrane proton movements. We designed a system which fulfills the minimum structural and functional requirements to investigate the physico/chemical conditions of the processes: RCs were reconstituted in closed lipid vesicles made of selected lipids entrapping a pH sensitive indicator, and electron donors (cytochrome c2 and K4[Fe(CN)6]) and acceptors (decylubiquinone) were added to sustain the photocycle. Thanks to the low proton permeability of our preparations, we could show the formation of a transmembrane proton gradient under illumination and low buffering conditions directly by measuring proton-related signals simultaneously inside and outside the vesicles. The effect of selected ionophores such as gramicidin, nigericin and valinomycin was used to gain more information on the transmembrane proton gradient driven by the RC photochemistry.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700