Ultraclean contact transfer of patterned Ag electrodes by thermal release tape for transparent conductive electrode
详细信息    查看全文
  • 作者:Ju Yeon Woo ; Jun Ho Oh ; Hyo Han ; Ji-Weon Kim…
  • 关键词:Silver nanoink ; Contact transfer ; Roll imprint ; Thermal release tape ; Transparent conductive electrode
  • 刊名:International Journal of Precision Engineering and Manufacturing
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:17
  • 期:4
  • 页码:461-466
  • 全文大小:445 KB
  • 参考文献:1.Gaynor, W., Burkhard, G. F., McGehee, M. D., and Peumans, P., “Smooth Nanowire/Polymer Composite Transparent Electrodes, Advanced Materials, Vol. 23, No. 26, pp. 2905–2910, 2011.CrossRef
    2.Lee, J., Lee, P., Lee, H., Lee, D., Lee, S. S., and Ko, S. H., “Very Long Ag Nanowire Synthesis and Its Application in a Highly Transparent, Conductive and Flexible Metal Electrode Touch Panel, Nanoscale, Vol. 4, No. 20, pp. 6408–6414, 2012.CrossRef
    3.Wu, H., Kong, D., Ruan, Z., Hsu, P.-C., Wang, S., et al., “A Transparent Electrode based on a Metal Nanotrough Network, Nature Nanotechnology, Vol. 8, No. 6, pp. 421–425, 2013.CrossRef
    4.Lee, M.-S., Lee, K., Kim, S.-Y., Lee, H., Park, J., et al., “High-Performance, Transparent, and Stretchable Electrodes using Graphene-Metal Nanowire Hybrid Structures, Nano Letters, Vol. 13, No. 6, pp. 2814–2821, 2013.CrossRef
    5.He, T., Xie, A., Reneker, D. H., and Zhu, Y., “A Tough and High-Performance Transparent Electrode from a Scalable and Transfer-Free Method, ACS Nano, Vol. 8, No. 5, pp. 4782–4789, 2014.CrossRef
    6.Kumar, A. and Zhou, C., “The Race to Replace Tin-Doped Indium Oxide: Which Material will Win, ACS Nano, Vol. 4, No. 1, pp. 11–14, 2010.CrossRef
    7.Lee, J., Lee, I., Kim, T. S., and Lee, J. Y., “Efficient Welding of Silver Nanowire Networks without Post-Processing, Small, Vol. 9, No. 17, pp. 2887–2894, 2013.CrossRef
    8.Hecht, D. S., Hu, L., and Irvin, G., “Emerging Transparent Electrodes based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures, Advanced Materials, Vol. 23, No. 13, pp. 1482–1513, 2011.CrossRef
    9.Miller, M. S., O’Kane, J. C., Niec, A., Carmichael, R. S., and Carmichael, T. B., “Silver Nanowire/Optical Adhesive Coatings as Transparent Electrodes for Flexible Electronics, ACS Applied Materials & Interfaces, Vol. 5, No. 20, pp. 10165–10172, 2013.CrossRef
    10.Leem, D. S., Edwards, A., Faist, M., Nelson, J., Bradley, D. D., and de Mello, J. C., “Efficient Organic Solar Cells with Solution-Processed Silver Nanowire Electrodes, Advanced Materials, Vol. 23, No. 38, pp. 4371–4375, 2011.CrossRef
    11.Hu, L., Kim, H. S., Lee, J.-Y., Peumans, P., and Cui, Y., “Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes, ACS Nano, Vol. 4, No. 5, pp. 2955–2963, 2010.CrossRef
    12.Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., et al., “A Stretchable Carbon Nanotube Strain Sensor for Human-Motion Detection, Nature Nanotechnology, Vol. 6, No. 5, pp. 296–301, 2011.CrossRef
    13.Yu, Z., Niu, X., Liu, Z., and Pei, Q., “Intrinsically Stretchable Polymer Light-Emitting Devices using Carbon Nanotube-Polymer Composite Electrodes, Advanced Materials, Vol. 23, No. 34, pp. 3989–3994, 2011.CrossRef
    14.Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., et al., “Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes, Nature, Vol. 457, No. 7230, pp. 706–710, 2009.CrossRef
    15.Lipomi, D. J., Lee, J. A., Vosgueritchian, M., Tee, B. C.-K., Bolander, J. A., and Bao, Z., “Electronic Properties of Transparent Conductive Films of Pedot: PSS on Stretchable Substrates, Chemistry of Materials, Vol. 24, No. 2, pp. 373–382, 2012.CrossRef
    16.Chen, T. L., Ghosh, D. S., Mkhitaryan, V., and Pruneri, V., “Hybrid Transparent Conductive Film on Flexible Glass Formed by Hot-Pressing Graphene on a Silver Nanowire Mesh, ACS Applied Materials & Interfaces, Vol. 5, No. 22, pp. 11756–11761, 2013.CrossRef
    17.Choi, C. S., Jo, Y. H., Kim, M. G., and Lee, H. M., “Control of Chemical Kinetics for Sub-10 nm Cu Nanoparticles to Fabricate Highly Conductive Ink Below 150°C, Nanotechnology, Vol. 23, No. 6, Paper No. 065601, 2012.
    18.Hösel, M. and Krebs, F. C., “Large-Scale Roll-to-Roll Photonic Sintering of Flexo Printed Silver Nanoparticle Electrodes, Journal of Materials Chemistry, Vol. 22, No. 31, pp. 15683–15688, 2012.CrossRef
    19.Russo, A., Ahn, B. Y., Adams, J. J., Duoss, E. B., Bernhard, J. T., and Lewis, J. A., “Pen-on-Paper Flexible Electronics, Advanced Materials, Vol. 23, No. 30, pp. 3426–3430, 2011.CrossRef
    20.Singh, M., Haverinen, H. M., Dhagat, P., and Jabbour, G. E., “Inkjet Printing-Process and Its Applications, Advanced Materials, Vol. 22, No. 6, pp. 673–685, 2010.CrossRef
    21.Nomura, K.-I., Ushijima, H., Mitsui, R., Takahashi, S., and Nakajima, S.-I., “Screen-Offset Printing for Fine Conductive Patterns, Microelectronic Engineering, Vol. 123, pp. 58–61, 2014.CrossRef
    22.Lee, T.-M., Noh, J.-H., Kim, C. H., Jo, J., and Kim, D.-S., “Development of a Gravure Offset Printing System for the Printing Electrodes of Flat Panel Display, Thin Solid Films, Vol. 518, No. 12, pp. 3355–3359, 2010.CrossRef
    23.Du, K., Wathuthanthri, I., Mao, W., Xu, W., and Choi, C.-H., “Large-Area Pattern Transfer of Metallic Nanostructures on Glass Substrates via Interference Lithography, Nanotechnology, Vol. 22, No. 28, Paper No. 285306, 2011.
    24.Du, K., Wathuthanthri, I., Liu, Y., Xu, W., and Choi, C.-H., “Wafer-Scale Pattern Transfer of Metal Nanostructures on Polydimethylsiloxane (PDMS) Substrates via Holographic Nanopatterns, ACS Applied Materials & Interfaces, Vol. 4, No. 10, pp. 5505–5514, 2012.CrossRef
    25.Ding, J., Du, K., Wathuthanthri, I., Choi, C.-H., Fisher, F. T., and Yang, E.-H., “Transfer Patterning of Large-Area Graphene Nanomesh via Holographic Lithography and Plasma Etching, Journal of Vacuum Science & Technology B, Vol. 32, No. 6, Paper No. 06FF01, 2014.
    26.Kuang, P., Park, J. M., Leung, W., Mahadevapuram, R. C., Nalwa, K. S., et al., “A New Architecture for Transparent Electrodes: Relieving the Trade-Off between Electrical Conductivity and Optical Transmittance, Advanced Materials, Vol. 23, No. 21, pp. 2469–2473, 2011.CrossRef
    27.Park, J. H., Lee, D. Y., Kim, Y.-H., Kim, J. K., Lee, J. H., et al., “Flexible and Transparent Metallic Grid Electrodes Prepared by Evaporative Assembly, ACS Applied Materials & Interfaces, Vol. 6, No. 15, pp. 12380–12387, 2014.CrossRef
    28.Yeo, L. P., Ng, S. H., Wang, Z., Wang, Z., and de Rooij, N. F., “Micro-Fabrication of Polymeric Devices using Hot Roller Embossing, Microelectronic Engineering, Vol. 86, No. 4, pp. 933–936, 2009.CrossRef
    29.Lee, M. J., Lee, N. Y., Lim, J. R., Kim, J. B., Kim, M., et al., “Antiadhesion Surface Treatments of Molds for High-Resolution Unconventional Lithography, Advanced Materials, Vol. 18, No. 23, pp. 3115–3119, 2006.CrossRef
    30.Brandrup, J., Immergut, E. H., Grulke, E. A., “Polymer Handbook, John Wiley & Sons, 4th Ed., p. 521, 1999.
  • 作者单位:Ju Yeon Woo (1)
    Jun Ho Oh (1)
    Hyo Han (1)
    Ji-Weon Kim (1)
    Sunghwan Jo (1)
    Chang-Soo Han (1)

    1. School of Mechanical Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
  • 刊物类别:Engineering
  • 刊物主题:Industrial and Production Engineering
    Materials Science
  • 出版者:Korean Society for Precision Engineering, in co-publication with Springer Verlag GmbH
  • ISSN:2005-4602
文摘
Silver grid electrode is a promising candidate for transparent conductive film because of its outstanding electrical, thermal, and optical properties, which can be easily tuned by changing the line width, spacing, and thickness of the metal pattern. Here, we presented the fabrication method of transparent Ag electrode with line-pattern using contact transfer technique with thermal release tape (TRT) that is easy to adhere and/or release to the substrate. To fabricate a line-patterned Ag electrode, the following efficient processes were developed: 1) preparation of line-patterned recess using thermal-roll imprinting, 2) surface modification by the anti-adhesion layer coating, 3) Ag infilling into the line-patterned recess using a doctor blade, 4) transfer of Ag electrode to the target substrate using TRT. As a result, the Ag line-patterned film with low sheet resistance (17.94 Ω/sq) and high transparency (90.28% at 550 nm) was obtained. This film can be tailored on requirement for various electronic applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700