Regulation of heme biosynthesis and transport in metazoa
详细信息    查看全文
  • 作者:FengXiu Sun ; YongJiao Cheng ; CaiYong Chen
  • 关键词:heme ; iron ; synthesis ; transport ; regulation
  • 刊名:Science China Life Sciences
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:58
  • 期:8
  • 页码:757-764
  • 全文大小:417 KB
  • 参考文献:1.Korolnek T, Hamza I. Like iron in the blood of the people: the requirement for heme trafficking in iron metabolism. Front Pharmacol, 2014, 5: 1鈥?3View Article
    2.Severance S, Hamza I. Trafficking of heme and porphyrins in metazoa. Chem Rev, 2009, 109: 4596鈥?616PubMed Central PubMed View Article
    3.Haldar M, Kohyama M, So AY, Wumesh KC, Wu XD, Briseno CG, Satpathy AT, Kretzer NM, Arase H, Rajasekaran NS, Wang L, Egawa T, Igarashi K, Baltimore D, Murphy TL, Murphy KM. Heme-mediated SPI-C induction promotes monocyte differentiation into iron-recycling macrophages. Cell, 2014, 156: 1223鈥?234PubMed Central PubMed View Article
    4.Ogawa K, Sun J, Taketani S, Nakajima O, Nishitani C, Sassa S, Hayashi N, Yamamoto M, Shibahara S, Fujita H, Igarashi K. Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1. EMBO J, 2001, 20: 2835鈥?843PubMed Central PubMed View Article
    5.Suzuki H, Tashiro S, Hira S, Sun J, Yamazaki C, Zenke Y, Ikeda-Saito M, Yoshida M, Igarashi K. Heme regulates gene expression by triggering Crm1-dependent nuclear export of Bach1. EMBO J, 2004, 23: 2544鈥?553PubMed Central PubMed View Article
    6.Warnatz HJ, Schmidt D, Manke T, Piccini I, Sultan M, Borodina T, Balzereit D, Wruck W, Soldatov A, Vingron M, Lehrach H, Yaspo ML. The BTB and CNC homology 1 (BACH1) target genes are involved in the oxidative stress response and in control of the cell cycle. J Biol Chem, 2011, 286: 23521鈥?3532PubMed Central PubMed View Article
    7.Kaasik K, Lee CC. Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature, 2004, 430: 467鈥?71PubMed View Article
    8.Lukat-Rodgers GS, Correia C, Botuyan MV, Mer G, Rodgers KR. Heme-based sensing by the mammalian circadian protein clock. Inorg Chem, 2010, 49: 6349鈥?365PubMed Central PubMed View Article
    9.Raghuram S, Stayrook KR, Huang P, Rogers PM, Nosie AK, McClure DB, Burris LL, Khorasanizadeh S, Burris TP, Rastinejad F. Identification of heme as the ligand for the orphan nuclear receptors REV-ERB伪 and REV-ERB尾. Nat Struct Mol Biol, 2007, 14: 1207鈥?213PubMed Central PubMed View Article
    10.Yin L, Wu N, Curtin JC, Qatanani M, Szwergold NR, Reid RA, Waitt GM, Parks DJ, Pearce KH, Wisely GB, Lazar MA. REV-ERB伪, a heme sensor that coordinates metabolic and circadian pathways. Science, 2007, 318: 1786鈥?789PubMed View Article
    11.Shen J, Sheng XP, Chang ZN, Wu Q, Wang S, Xuan ZL, Li D, Wu YL, Shang YJ, Kong XT, Yu L, Li L, Ruan KC, Hu HY, Huang Y, Hui LJ, Xie D, Wang FD, Hu RG. Iron metabolism regulates p53 signaling through direct heme-p53 interaction and modulation of p53 localization, stability, and function. Cell Rep, 2014, 7: 180鈥?93PubMed Central PubMed View Article
    12.Faller M, Matsunaga M, Yin S, Loo JA, Guo F. Heme is involved in microrna processing. Nat Struct Mol Biol, 2007, 14: 23鈥?9PubMed View Article
    13.Quick-Cleveland J, Jacob JP, Weitz SH, Shoffner G, Senturia R, Guo F. The DGCR8 RNA-binding heme domain recognizes primary micrornas by clamping the hairpin. Cell Rep, 2014, 7: 1994鈥?005PubMed Central PubMed View Article
    14.Weitz SH, Gong M, Barr I, Weiss S, Guo F. Processing of microRNA primary transcripts requires heme in mammalian cells. Proc Natl Acad Sci USA, 2014, 111: 1861鈥?866PubMed Central PubMed View Article
    15.Naito Y, Takagi T, Higashimura Y. Heme oxygenase-1 and anti- inflammatory M2 macrophages. Arch Biochem Biophys, 2014, 564: 83鈥?8PubMed View Article
    16.Wegiel B, Nemeth Z, Correa-Costa M, Bulmer AC, Otterbein LE. Heme oxygenase-1: a metabolic nike. Antioxid Redox Signal, 2014, 20: 1709鈥?722PubMed Central PubMed View Article
    17.Andrews NC. Disorders of iron metabolism. N Engl J Med, 1999, 341: 1986鈥?995PubMed View Article
    18.Chen C, Paw BH. Cellular and mitochondrial iron homeostasis in vertebrates. Biochim Biophys Acta, 2012, 1823: 1459鈥?467PubMed Central PubMed View Article
    19.Ishikawa Y, Maeda M, Pasham M, Aguet F, Tacheva-Grigorova SK, Masuda T, Yi H, Lee SU, Xu J, Teruya-Feldstein J, Ericsson M, Mullally A, Heuser J, Kirchhausen T, Maeda T. Role of the clathrin adaptor PICALM in normal hematopoiesis and polycythemia vera pathophysiology. Haematologica, 2015, 100: 439鈥?51PubMed Central PubMed View Article
    20.Scotland PB, Heath JL, Conway AE, Porter NB, Armstrong MB, Walker JA, Klebig ML, Lavau CP, Wechsler DS. The picalm protein plays a key role in iron homeostasis and cell proliferation. PLoS One, 2012, 7: e44252PubMed Central PubMed View Article
    21.Suzuki M, Tanaka H, Tanimura A, Tanabe K, Oe N, Rai S, Kon S, Fukumoto M, Takei K, Abe T, Matsumura I, Kanakura Y, Watanabe T. The clathrin assembly protein picalm is required for erythroid maturation and transferrin internalization in mice. PLoS One, 2012, 7: e31854PubMed Central PubMed View Article
    22.Chen C, Garcia-Santos D, Ishikawa Y, Seguin A, Li L, Fegan KH, Hildick-Smith GJ, Shah DI, Cooney JD, Chen W, King MJ, Yien YY, Schultz IJ, Anderson H, Dalton AJ, Freedman ML, Kingsley PD, Palis J, Hattangadi SM, Lodish HF, Ward DM, Kaplan J, Maeda T, Ponka P, Paw BH. Snx3 regulates recycling of the transferrin receptor and iron assimilation. Cell Metab, 2013, 17: 343鈥?52PubMed Central PubMed View Article
    23.Lim JE, Jin O, Bennett C, Morgan K, Wang F, Trenor CC, Fleming MD, Andrews NC. A mutation in Sec15l1 causes anemia in hemoglobin deficit (hbd) mice. Nat Genet, 2005, 37: 1270鈥?273PubMed View Article
    24.Zhang AS, Sheftel AD, Ponka P. The anemia of 鈥渉aemoglobin- deficit鈥?(hbd/hbd) mice is caused by a defect in transferrin cycling. Exp Hematol, 2006, 34: 593鈥?98PubMed View Article
    25.Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, Sharp JJ, Fujiwara Y, Barker JE, Fleming MD. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet, 2005, 37: 1264鈥?269PubMed Central PubMed View Article
    26.Ohgami RS, Campagna DR, McDonald A, Fleming MD. The steap proteins are metalloreductases. Blood, 2006, 108: 1388鈥?394PubMed Central PubMed View Article
    27.Fleming MD, Romano MA, Su MA, Garrick LM, Garrick MD, Andrews NC. Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc Natl Acad Sci USA, 1998, 95: 1148鈥?153PubMed Central PubMed View Article
    28.Dong XP, Cheng X, Mills E, Delling M, Wang F, Kurz T, Xu H. The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature, 2008, 455: 992鈥?96PubMed Central PubMed View Article
    29.Cheng X, Zhang X, Gao Q, Ali Samie M, Azar M, Tsang WL, Dong L, Sahoo N, Li X, Zhuo Y, Garrity AG, Wang X, Ferrer M, Dowling J, Xu L, Han R, Xu H. The intracellular Ca2+ channel MCOLN1 is required for sarcolemma repair to prevent muscular dystrophy. Nat Med, 2014, 20: 1187鈥?192PubMed Central PubMed View Article
    30.Frey AG, Nandal A, Park JH, Smith PM, Yabe T, Ryu MS, Ghosh MC, Lee J, Rouault TA, Park MH, Philpott CC. Iron chaperones PCBP1 and PCBP2 mediate the metallation of the dinuclear iron enzyme deoxyhypusine hydroxylase. Proc Natl Acad Sci USA, 2014, 111: 8031鈥?036PubMed Central PubMed View Article
    31.Nandal A, Ruiz JC, Subramanian P, Ghimire-Rijal S, Sinnamon RA, Stemmler TL, Bruick RK, Philpott CC. Activation of the hif prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2. Cell Metab, 2011, 14: 647鈥?57PubMed Central PubMed View Article
    32.Shi H, Bencze KZ, Stemmler TL, Philpott CC. A cytosolic iron chaperone that delivers iron to ferritin. Science, 2008, 320: 1207鈥?210PubMed Central PubMed View Article
    33.Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, Gwynn B, Lambert AJ, Wingert RA, Traver D, Trede NS, Barut BA, Zhou Y, Minet E, Donovan A, Brownlie A, Balzan R, Weiss MJ, Peters LL, Kaplan J, Zon LI, Paw BH. Mitoferrin is essential for erythroid iron assimilation. Nature, 2006, 440: 96鈥?00PubMed View Article
    34.Paradkar PN, Zumbrennen KB, Paw BH, Ward DM, Kaplan J. Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2. Mol Cell Biol, 2009, 29: 1007鈥?016PubMed Central PubMed View Article
    35.Labbe RF, Kurumada T, Onisawa J. The role of succinyl-coa synthetase in the control of heme biosynthesis. Biochim Biophys Acta, 1965, 111: 403鈥?15PubMed View Article
    36.Onisawa J, Labbe RF. Terminal oxidation in the regulation of heme biosynthesis. Science, 1963, 140: 1326鈥?327PubMed View Article
    37.Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer, 2013, 13: 572鈥?83PubMed Central PubMed View Article
    38.Wang W, Wu Z, Dai Z, Yang Y, Wang J, Wu G. Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids, 2013, 45: 463鈥?77PubMed View Article
    39.Anderson DD, Quintero CM, Stover PJ. Identification of a de novo thymidylate biosynthesis pathway in mammalian mitochondria. Proc Natl Acad Sci USA, 2011, 108: 15163鈥?5168PubMed Central PubMed View Article
    40.di Salvo ML, Contestabile R, Paiardini A, Maras B. Glycine consumption and mitochondrial serine hydroxymethyltransferase in cancer cells: the heme connection. Med Hypotheses, 2013, 80: 633鈥?36PubMed View Article
    41.Guastella J, Brecha N, Weigmann C, Lester HA, Davidson N. Cloning, expression, and localization of a rat brain high-affinity glycine transporter. Proc Natl Acad Sci USA, 1992, 89: 7189鈥?193PubMed Central PubMed View Article
    42.Harvey RJ, Yee BK. Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain. Nat Rev Drug Discov, 2013, 12: 866鈥?85PubMed View Article
    43.Liu QR, Lopez-Corcuera B, Mandiyan S, Nelson H, Nelson N. Cloning and expression of a spinal cord- and brain-specific glycine transporter with novel structural features. J Biol Chem, 1993, 268: 22802鈥?2808PubMed
    44.An X, Schulz VP, Li J, Wu K, Liu J, Xue F, Hu J, Mohandas N, Gallagher PG. Global transcriptome analyses of human and murine terminal erythroid differentiation. Blood, 2014, 123: 3466鈥?477PubMed Central PubMed View Article
    45.Schranzhofer M, Bergeron R, dos Santos DG, Ponka P. Glycine transporter 1 plays a crucial role in hemoglobinization. Am J Hematol, 2013, 88: E32鈥揈33View Article
    46.Guernsey DL, Jiang H, Campagna DR, Evans SC, Ferguson M, Kellogg MD, Lachance M, Matsuoka M, Nightingale M, Rideout A, Saint-Amant L, Schmidt PJ, Orr A, Bottomley SS, Fleming MD, Ludman M, Dyack S, Fernandez CV, Samuels ME. Mutations in mitochondrial carrier family gene SLC25A38 cause nonsyndromic autosomal recessive congenital sideroblastic anemia. Nat Genet, 2009, 41: 651鈥?53PubMed View Article
    47.Liu G, Guo S, Kang H, Zhang F, Hu Y, Wang L, Li M, Ru Y, Camaschella C, Han B, Nie G. Mutation spectrum in chinese patients affected by congenital sideroblastic anemia and a search for a genotype- phenotype relationship. Haematologica, 2013, 98: e158鈥揺160PubMed Central PubMed View Article
    48.Gotoh S, Nakamura T, Kataoka T, Taketani S. Egr-1 regulates the transcriptional repression of mouse 未-aminolevulinic acid synthase 1 by heme. Gene, 2011, 472: 28鈥?6PubMed View Article
    49.Yoshino K, Munakata H, Kuge O, Ito A, Ogishima T. Haeme-regulated degradation of 未-aminolevulinate synthase 1 in rat liver mitochondria. J Biochem, 2007, 142: 453鈥?58PubMed View Article
    50.Riddle RD, Yamamoto M, Engel JD. Expression of 未-aminolevulinate synthase in avian cells: separate genes encode erythroid-specific and nonspecific isozymes. Proc Natl Acad Sci USA, 1989, 86: 792鈥?96PubMed Central PubMed View Article
    51.Dandekar T, Stripecke R, Gray NK, Goossen B, Constable A, Johansson HE, Hentze MW. Identification of a novel iron-responsive element in murine and human erythroid 未-aminolevulinic acid synthase mRNA. EMBO J, 1991, 10: 1903鈥?909PubMed Central PubMed
    52.Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. Cell, 2004, 117: 285鈥?97PubMed View Article
    53.Hofer T, Wenger RH, Kramer MF, Ferreira GC, Gassmann M. Hypoxic up-regulation of erythroid 5-aminolevulinate synthase. Blood, 2003, 101: 348鈥?50PubMed View Article
    54.Zhang FL, Shen GM, Liu XL, Wang F, Zhao HL, Yu J, Zhang JW. Hypoxic induction of human erythroid-specific 未-aminolevulinate synthase mediated by hypoxia-inducible factor 1. Biochemistry, 2011, 50: 1194鈥?202PubMed View Article
    55.Liu YL, Ang SO, Weigent DA, Prchal JT, Bloomer JR. Regulation of ferrochelatase gene expression by hypoxia. Life Sci, 2004, 75: 2035鈥?043PubMed View Article
    56.Crooks DR, Ghosh MC, Haller RG, Tong WH, Rouault TA. Posttranslational stability of the heme biosynthetic enzyme ferrochelatase is dependent on iron availability and intact iron-sulfur cluster assembly machinery. Blood, 2010, 115: 860鈥?69PubMed Central PubMed View Article
    57.Shah DI, Takahashi-Makise N, Cooney JD, Li L, Schultz IJ, Pierce EL, Narla A, Seguin A, Hattangadi SM, Medlock AE, Langer NB, Dailey TA, Hurst SN, Faccenda D, Wiwczar JM, Heggers SK, Vogin G, Chen W, Chen C, Campagna DR, Brugnara C, Zhou Y, Ebert BL, Danial NN, Fleming MD, Ward DM, Campanella M, Dailey HA, Kaplan J, Paw BH. Mitochondrial Atpif1 regulates haem synthesis in developing erythroblasts. Nature, 2012, 491: 608鈥?12PubMed Central PubMed View Article
    58.Chen W, Dailey HA, Paw BH. Ferrochelatase forms an oligomeric complex with mitoferrin-1 and Abcb10 for erythroid heme biosynthesis. Blood, 2010, 116: 628鈥?30PubMed Central PubMed View Article
    59.Yamamoto M, Arimura H, Fukushige T, Minami K, Nishizawa Y, Tanimoto A, Kanekura T, Nakagawa M, Akiyama S, Furukawa T. Abcb10 role in heme biosynthesis in vivo: Abcb10 knockout in mice causes anemia with protoporphyrin IX and iron accumulation. Mol Cell Biol, 2014, 34: 1077鈥?084PubMed Central PubMed View Article
    60.Bayeva M, Khechaduri A, Wu R, Burke MA, Wasserstrom JA, Singh N, Liesa M, Shirihai OS, Langer NB, Paw BH, Ardehali H. ATP-binding cassette B10 regulates early steps of heme synthesis. Circ Res, 2013, 113: 279鈥?87PubMed View Article
    61.Chen W, Paradkar PN, Li L, Pierce EL, Langer NB, Takahashi-Makise N, Hyde BB, Shirihai OS, Ward DM, Kaplan J, Paw BH. Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria. Proc Natl Acad Sci USA, 2009, 106: 16263鈥?6268PubMed Central PubMed View Article
    62.Rhee HW, Zou P, Udeshi ND, Martell JD, Mootha VK, Carr SA, Ting AY. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science, 2013, 339: 1328鈥?331PubMed Central PubMed View Article
    63.Krishnamurthy PC, Du G, Fukuda Y, Sun D, Sampath J, Mercer KE, Wang J, Sosa-Pineda B, Murti KG, Schuetz JD. Identification of a mammalian mitochondrial porphyrin transporter. Nature, 2006, 443: 586鈥?89PubMed View Article
    64.Helias V, Saison C, Ballif BA, Peyrard T, Takahashi J, Takahashi H, Tanaka M, Deybach JC, Puy H, Le Gall M, Sureau C, Pham BN, Le Pennec PY, Tani Y, Cartron JP, Arnaud L. Abcb6 is dispensable for erythropoiesis and specifies the new blood group system langereis. Nat Genet, 2012, 44: 170鈥?73PubMed Central PubMed View Article
    65.Ferreira GC, Andrew TL, Karr SW, Dailey HA. Organization of the terminal two enzymes of the heme biosynthetic pathway. Orientation of protoporphyrinogen oxidase and evidence for a membrane complex. J Biol Chem, 1988, 263: 3835鈥?839PubMed
    66.Koch M, Breithaupt C, Kiefersauer R, Freigang J, Huber R, Messerschmidt A. Crystal structure of protoporphyrinogen ix oxidase: a key enzyme in haem and chlorophyll biosynthesis. EMBO J, 2004, 23: 1720鈥?728PubMed Central PubMed View Article
    67.Yien YY, Robledo RF, Schultz IJ, Takahashi-Makise N, Gwynn B, Bauer DE, Dass A, Yi G, Li L, Hildick-Smith GJ, Cooney JD, Pierce EL, Mohler K, Dailey TA, Miyata N, Kingsley PD, Garone C, Hattangadi SM, Huang H, Chen W, Keenan EM, Shah DI, Schlaeger TM, DiMauro S, Orkin SH, Cantor AB, Palis J, Koehler CM, Lodish HF, Kaplan J, Ward DM, Dailey HA, Phillips JD, Peters LL, Paw BH. TMEM14C is required for erythroid mitochondrial heme metabolism. J Clin Invest, 2014, 124: 4294鈥?304PubMed Central PubMed View Article
    68.Nilsson R, Schultz IJ, Pierce EL, Soltis KA, Naranuntarat A, Ward DM, Baughman JM, Paradkar PN, Kingsley PD, Culotta VC, Kaplan J, Palis J, Paw BH, Mootha VK. Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis. Cell Metab, 2009, 10: 119鈥?30PubMed Central PubMed View Article
    69.Shayeghi M, Latunde-Dada GO, Oakhill JS, Laftah AH, Takeuchi K, Halliday N, Khan Y, Warley A, McCann FE, Hider RC, Frazer DM, Anderson GJ, Vulpe CD, Simpson RJ, McKie AT. Identification of an intestinal heme transporter. Cell, 2005, 122: 789鈥?01PubMed View Article
    70.Rajagopal A, Rao AU, Amigo J, Tian M, Upadhyay SK, Hall C, Uhm S, Mathew MK, Fleming MD, Paw BH, Krause M, Hamza I. Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature, 2008, 453: 1127鈥?131PubMed Central PubMed View Article
    71.Quigley JG, Yang ZT, Worthington MT, Phillips JD, Sabo KM, Sabath DE, Berg CL, Sassa S, Wood BL, Abkowitz JL. Identification of a human heme exporter that is essential for erythropoiesis. Cell, 2004, 118: 757鈥?66PubMed View Article
    72.Keel SB, Doty RT, Yang Z, Quigley JG, Chen J, Knoblaugh S, Kingsley PD, de Domenico I, Vaughn MB, Kaplan J, Palis J, Abkowitz JL. A heme export protein is required for red blood cell differentiation and iron homeostasis. Science, 2008, 319: 825鈥?28PubMed View Article
    73.Korolnek T, Zhang J, Beardsley S, Scheffer GL, Hamza I. Control of metazoan heme homeostasis by a conserved multidrug resistance protein. Cell Metab, 2014, 19: 1008鈥?019PubMed Central PubMed View Article
    74.Chiabrando D, Marro S, Mercurio S, Giorgi C, Petrillo S, Vinchi F, Fiorito V, Fagoonee S, Camporeale A, Turco E, Merlo GR, Silengo L, Altruda F, Pinton P, Tolosano E. The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation. J Clin Invest, 2012, 122: 4569鈥?579PubMed Central PubMed View Article
    75.White C, Yuan X, Schmidt PJ, Bresciani E, Samuel TK, Campagna D, Hall C, Bishop K, Calicchio ML, Lapierre A, Ward DM, Liu P, Fleming MD, Hamza I. HRG1 is essential for heme transport from the phagolysosome of macrophages during erythrophagocytosis. Cell Metab, 2013, 17: 261鈥?70PubMed Central PubMed View Article
    76.Chakravarti R, Aulak KS, Fox PL, Stuehr DJ. Gapdh regulates cellular heme insertion into inducible nitric oxide synthase. Proc Natl Acad Sci USA, 2010, 107: 18004鈥?8009PubMed Central PubMed View Article
    77.Ghosh A, Stuehr DJ. Soluble guanylyl cyclase requires heat shock protein 90 for heme insertion during maturation of the no-active enzyme. Proc Natl Acad Sci USA, 2012, 109: 12998鈥?3003PubMed Central PubMed View Article
    78.Hrkal Z, Vodrazka Z, Kalousek I. Transfer of heme from ferrihemoglobin and ferrihemoglobin isolated chains to hemopexin. Eur J Biochem, 1974, 43: 73鈥?8PubMed View Article
    79.Hvidberg V, Maniecki MB, Jacobsen C, Hojrup P, Moller HJ, Moestrup SK. Identification of the receptor scavenging hemopexin- heme complexes. Blood, 2005, 106: 2572鈥?579PubMed View Article
    80.Hada H, Shiraki T, Watanabe-Matsui M, Igarashi K. Hemopexin-dependent heme uptake via endocytosis regulates the Bach1 transcription repressor and heme oxygenase gene activation. Biochim Biophys Acta, 2014, 1840: 2351鈥?360PubMed View Article
    81.Chen C, Samuel TK, Sinclair J, Dailey HA, Hamza I. An intercellular heme-trafficking protein delivers maternal heme to the embryo during development in C. Elegans. Cell, 2011, 145: 720鈥?31PubMed Central PubMed View Article
    82.Qiu A, Jansen M, Sakaris A, Min SH, Chattopadhyay S, Tsai E, Sandoval C, Zhao R, Akabas MH, Goldman ID. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell, 2006, 127: 917鈥?28PubMed View Article
    83.Yuan X, Protchenko O, Philpott CC, Hamza I. Topologically conserved residues direct heme transport in HRG-1-related proteins. J Biol Chem, 2012, 287: 4914鈥?924PubMed Central PubMed View Article
    84.Huynh C, Yuan X, Miguel DC, Renberg RL, Protchenko O, Philpott CC, Hamza I, Andrews NW. Heme uptake by Leishmania amazonensis is mediated by the transmembrane protein LHR1. PLoS Pathog, 2012, 8: e1002795PubMed Central PubMed View Article
    85.Chen C, Samuel TK, Krause M, Dailey HA, Hamza I. Heme utilization in the caenorhabditis elegans hypodermal cells is facilitated by heme-responsive gene-2. J Biol Chem, 2012, 287: 9601鈥?612PubMed Central PubMed View Article
    86.Philip M, Funkhouser SA, Chiu EY, Phelps SR, Delrow JJ, Cox J, Fink PJ, Abkowitz JL. Heme exporter FLVCR is required for T cell development and peripheral survival. J Immunol, 2015, 194: 1677鈥?685PubMed View Article
    87.Vinchi F, Ingoglia G, Chiabrando D, Mercurio S, Turco E, Silengo L, Altruda F, Tolosano E. Heme exporter FLVCR1a regulates heme synthesis and degradation and controls activity of cytochromes P450. Gastroenterology, 2014, 146: 1325鈥?338PubMed Central PubMed View Article
    88.Fiorito V, Neri F, Pala V, Silengo L, Oliviero S, Altruda F, Tolosano E. Hypoxia controls Flvcr1 gene expression in Caco2 cells through HIF2伪 and ETS1. Biochim Biophys Acta, 2014, 1839: 259鈥?64PubMed View Article
    89.Ghosh A, Stasch JP, Papapetropoulos A, Stuehr DJ. Nitric oxide and heat shock protein 90 activate soluble guanylate cyclase by driving rapid change in its subunit interactions and heme content. J Biol Chem, 2014, 289: 15259鈥?5271PubMed Central PubMed View Article
    90.Yang Z, Philips JD, Doty RT, Giraudi P, Ostrow JD, Tiribelli C, Smith A, Abkowitz JL. Kinetics and specificity of feline leukemia virus subgroup C receptor (FLVCR) export function and its dependence on hemopexin. J Biol Chem, 2010, 285: 28874鈥?8882PubMed Central PubMed View Article
    91.Shemin D, Rittenberg D. The utilization of glycine for the synthesis of a porphyrin. J Biol Chem, 1945, 159: 567鈥?68
    92.Wriston JC, Lack L, Shemin D. The mechanism of porphyrin formation; further evidence on the relationship of the citric acid cycle and porphyrin formation. J Biol Chem, 1955, 215: 603鈥?11PubMed
  • 作者单位:FengXiu Sun (1)
    YongJiao Cheng (1)
    CaiYong Chen (1)

    1. College of Life Sciences and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China
  • 刊物主题:Life Sciences, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1869-1889
文摘
Heme is an iron-containing tetrapyrrole that plays a critical role in regulating a variety of biological processes including oxygen and electron transport, gas sensing, signal transduction, biological clock, and microRNA processing. Most metazoan cells synthesize heme via a conserved pathway comprised of eight enzyme-catalyzed reactions. Heme can also be acquired from food or extracellular environment. Cellular heme homeostasis is maintained through the coordinated regulation of synthesis, transport, and degradation. This review presents the current knowledge of the synthesis and transport of heme in metazoans and highlights recent advances in the regulation of these pathways.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700