Trafficking of excitatory amino acid transporter 2-laden vesicles in cultured astrocytes: a comparison between approximate and exact determination of trajectory angles
详细信息    查看全文
  • 作者:Chapin E. Cavender ; Manoj K. Gottipati ; Vladimir Parpura
  • 关键词:Glutamate transporters ; Trafficking ; Angle ; Diffusion coefficient ; GFAP
  • 刊名:Amino Acids
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:47
  • 期:2
  • 页码:357-367
  • 全文大小:1,520 KB
  • 参考文献:1. Brenner M, Johnson AB, Boespflug-Tanguy O, Rodriguez D, Goldman JE, Messing A (2001) Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet 27:117-20. doi:10.1038/83679 CrossRef
    2. Cavender CE, Gottipati MK, Malarkey EB, Parpura V (2013) Method for the determination of trajectory angles of directional secretory vesicles in cultured astrocytes. Inquiro 7:48-2
    3. Caviston JP, Holzbaur EL (2006) Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol 16:530-37. doi:10.1016/j.tcb.2006.08.002 CrossRef
    4. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1-05 CrossRef
    5. Darnell J, Lodish H, Baltimore D (1990) Molecular cell biology, 2nd edn. Scientific American Books Inc., New York
    6. Drummond GB (2009) Reporting ethical matters in the Journal of Physiology: standards and advice. J Physiol 587:713-19 CrossRef
    7. Einstein A (1905) On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat. Ann Phys 17:549-60 CrossRef
    8. Furuta A, Rothstein JD, Martin LJ (1997) Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J Neurosci 17:8363-375
    9. Gottipati MK, Kalinina I, Bekyarova E, Haddon RC, Parpura V (2012) Chemically functionalized water-soluble single-walled carbon nanotubes modulate morpho-functional characteristics of astrocytes. Nano Lett 12:4742-747. doi:10.1021/nl302178s CrossRef
    10. Hartigan JA, Hartigan PM (1985) The dip test of unimodality. Ann Stat 13:70-4. doi:10.2307/2241144 CrossRef
    11. Haydon PG, Lartius R, Parpura V, Marchese-Ragona SP (1996) Membrane deformation of living glial cells using atomic force microscopy. J Microsc 182:114-20 CrossRef
    12. Hertz L, Dringen R, Schousboe A, Robinson SR (1999) Astrocytes: glutamate producers for neurons. J Neurosci Res 57:417-28 CrossRef
    13. Hughes EG, Maguire JL, McMinn MT, Scholz RE, Sutherland ML (2004) Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking. Brain Res Mol Brain Res 124:114-23. doi:10.1016/j.molbrainres.2004.02.021 CrossRef
    14. Hynd MR, Scott HL, Dodd PR (2004) Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 45:583-95. doi:10.1016/j.neuint.2004.03.007 CrossRef
    15. Kreft M, Potokar M, Stenovec M, Pangrsic T, Zorec R (2009) Regulated exocytosis and vesicle trafficking in astrocytes. Ann N Y Acad Sci 1152:30-2. doi:10.1111/j.1749-6632.2008.04005.x CrossRef
    16. Krendel M, Mooseker MS (2005) Myosins: tails (and heads) of functional diversity. Physiology 20:239-51. doi:10.1152/physiol.00014.2005 CrossRef
    17. Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460:525-42. doi:10.1007/s00424-010-0809-1
文摘
A clear consensus concerning the mechanisms of intracellular secretory vesicle trafficking in astrocytes is lacking in the physiological literature. A good characterization of vesicle trafficking that may assist researchers in achieving that goal is the trajectory angle, defined as the angle between the trajectory of a vesicle and a line radial to the cell’s nucleus. In this study, we provide a precise definition of the trajectory angle, describe and compare two methods for its calculation in terms of measureable trafficking parameters, and give recommendations for the appropriate use of each method. We investigated the trafficking of vesicles containing excitatory amino acid transporter 2 (EAAT2) fluorescently tagged with enhanced green fluorescent protein (EGFP) to quantify and validate the precision of each method. The motion of fluorescent puncta—taken to represent vesicles containing EAAT2-EGFP—was found to be typical of secretory vesicle trafficking. An exact method for calculating the trajectory angle of these puncta produced no error but required large computation time. An approximate method reduced the requisite computation time but produced an error depending on the inverse of the ratio of the punctum’s initial distance from the nucleus centroid to its maximal displacement. Fitting this dependence to a power function allowed us to establish an exclusion distance from the centroid, beyond which the approximate method is less likely to produce an error above an acceptable 5?%. We recommend that the exact method be used to calculate the trajectory angle for puncta closer to the nucleus centroid than this exclusion distance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700