Is There a Role for Invasive Hemodynamic Monitoring in Acute Heart Failure Management?
详细信息    查看全文
  • 作者:Daniel De Backer
  • 关键词:Pulmonary artery catheter ; Transpulmonary thermodilution ; Cardiac output ; Cardiac function ; Tissue perfusion ; Respiratory failure ; Circulatory failure
  • 刊名:Current Heart Failure Reports
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:12
  • 期:3
  • 页码:197-204
  • 全文大小:287 KB
  • 参考文献:Papers of particular interest, published recently, have been highlighted as: 鈥?Of importance 鈥⑩€?Of major importance1.De Backer D, Fagnoul D, Herpain A. The role of invasive techniques in cardiopulmonary evaluation. Curr Opin Crit Care. 2013;19(3):228鈥?3.View Article PubMed
    2.鈥?/div>Hemodynamic monitoring using echocardiography in the critically ill. Heidelberg Dordrecht London New York: Springer; 2011. Comprehensive book reporting how to use echocardiography for hemodynamic assessment.
    3.鈥⑩€?/div>International consensus statement on training standards for advanced critical care echocardiography. Intensive Care Med 2014 May;40(5):654-66.Consensus of several international scientific societies describing the requirements and pathways for training in advanced echocardiography.
    4.鈥?/div>Koo KK, Sun JC, Zhou Q, Guyatt G, Cook DJ, Walter SD, et al. Pulmonary artery catheters: evolving rates and reasons for use. Crit Care Med. 2011;39(7):1613鈥?. Important paper showing changes over time in the incidence and indications of use of pulmonary artery catheter.View Article PubMed
    5.Jeger RV, Lowe AM, Buller CE, Pfisterer ME, Dzavik V, Webb JG, et al. Hemodynamic parameters are prognostically important in cardiogenic shock but similar following early revascularization or initial medical stabilization: a report from the SHOCK Trial. Chest. 2007;132(6):1794鈥?03.View Article PubMed
    6.鈥⑩€?/div>Vincent JL, De Backer D. Circulatory shock. N Engl J Med. 2013;369(18):1726鈥?4. Comprehensive review on management of circulatory shock. View Article PubMed
    7.Reuter DA, Kirchner A, Felbinger TW, Weis FC, Kilger E, Lamm P, et al. Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function. Crit Care Med. 2003;31(5):1399鈥?04.View Article PubMed
    8.Mahjoub Y, Pila C, Friggeri A, Zogheib E, Lobjoie E, Tinturier F, et al. Assessing fluid responsiveness in critically ill patients: false-positive pulse pressure variation is detected by Doppler echocardiographic evaluation of the right ventricle. Crit Care Med. 2009;37(9):2570鈥?.View Article PubMed
    9.De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med. 2005;31(4):517鈥?3.View Article PubMed
    10.Heenen S, De Backer D, Vincent JL. How can the response to volume expansion in patients with spontaneous respiratory movements be predicted? Crit Care. 2006;10(4):R102.View Article PubMed Central PubMed
    11.Mimoz O, Rauss A, Rekik N, Brun-Buisson C, Lemaire F, Brochard L. Pulmonary artery catheterization in critically ill patients: a prospective analysis of outcome changes associated with catheter-prompted changes in therapy. Crit Care Med. 1994;22(4):573鈥?.View Article PubMed
    12.Wheeler AP, Bernard GR, Thompson BT, Schoenfeld D, Wiedemann HP, de Boisblanc B, et al. Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med. 2006;354(21):2213鈥?4.View Article PubMed
    13.Richard C, Warszawski J, Anguel N, Deye N, Combes A, Barnoud D, et al. Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2003;290(20):2713鈥?0.View Article PubMed
    14.Sandham JD, Hull RD, Brant RF, Knox L, Pineo GF, Doig CJ, et al. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med. 2003;348:5鈥?4.View Article PubMed
    15.Binanay C, Califf RM, Hasselblad V, O鈥機onnor CM, Shah MR, Sopko G, et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA. 2005;294(13):1625鈥?3.View Article PubMed
    16.Gnaegi A, Feihl F, Perret C. Intensive care physicians鈥?insufficient knowledge of right-heart catheterization at the bedside: time to act? Crit Care Med. 1997;25:213鈥?0.View Article PubMed
    17.Iberti TJ, Fischer EP, Leibowitz AB, Panacek EA, Silverstein JH, Albertson TE. A multicenter study of physicians鈥?knowledge of the pulmonary artery catheter. Pulmonary Artery Catheter Study Group. JAMA. 1990;264:2928鈥?2.View Article PubMed
    18.Jain M, Canham M, Upadhyay D, Corbridge T. Variability in interventions with pulmonary artery catheter data. Intensive Care Med. 2003;29(11):2059鈥?2.View Article PubMed
    19.De Backer D. Hemodynamic assessment: the technique or the physician at fault? Intensive Care Med. 2003;29:1865鈥?.View Article PubMed
    20.鈥⑩€?/div>De Backer D, Schortgen F. Physicians declining patient enrollment in clinical trials: what are the implications? Intensive Care Med. 2014;40(1):117鈥?. Editorial discussing the implications of refusal of inclusion in clinicl trials by attending physicians in centres taking part in randomized trials. This behavior frequently induces selection bias, leading to inclusion of less severe patients in the trial than in "real life".View Article PubMed
    21.Allen LA, Rogers JG, Warnica JW, Disalvo TG, Tasissa G, Binanay C, et al. High mortality without ESCAPE: the registry of heart failure patients receiving pulmonary artery catheters without randomization. J Card Fail. 2008;14(8):661鈥?.View Article PubMed Central PubMed
    22.Cope DK, Grimbert F, Downey JM, Taylor AE. Pulmonary capillary pressure: a review. Crit Care Med. 1992;20(7):1043鈥?6.View Article PubMed
    23.Carter RS, Snyder JV, Pinsky MR. LV filling pressure during PEEP measured by nadir wedge pressure after airway disconnection. Am J Physiol. 1985;249(4 Pt 2):H770鈥?.PubMed
    24.Pinsky M, Vincent JL, De Smet JM. Estimating left ventricular filling pressure during positive end-expiratory pressure in humans. Am Rev Respir Dis. 1991;143(1):25鈥?1.View Article PubMed
    25.Teboul JL, Pinsky MR, Mercat A, Anguel N, Bernardin G, Achard JM, et al. Estimating cardiac filling pressure in mechanically ventilated patients with hyperinflation. Crit Care Med. 2000;28:3631鈥?.View Article PubMed
    26.Ventetuolo CE, Klinger JR. Management of acute right ventricular failure in the intensive care unit. Ann Am Thorac Soc. 2014;11(5):811鈥?2.View Article PubMed
    27.鈥⑩€?/div>Rich JD, Shah SJ, Swamy RS, Kamp A, Rich S. Inaccuracy of Doppler echocardiographic estimates of pulmonary artery pressures in patients with pulmonary hypertension: implications for clinical practice. Chest. 2011;139(5):988鈥?3. Comparision of measuremnts of pulmonaryartery pressure by echocardiography and with pulmonary artery catheter. This study questions the reliability of echocardiographic measurements. View Article PubMed
    28.Arcasoy SM, Christie JD, Ferrari VA, Sutton MS, Zisman DA, Blumenthal NP, et al. Echocardiographic assessment of pulmonary hypertension in patients with advanced lung disease. Am J Respir Crit Care Med. 2003;167(5):735鈥?0.View Article PubMed
    29.De Backer D, Marx G, Tan A, Junker C, Van NM, Huter L, et al. Arterial pressure-based cardiac output monitoring: a multicenter validation of the third-generation software in septic patients. Intensive Care Med. 2011;37(2):233鈥?0.View Article PubMed Central PubMed
    30.van Lieshout JJ, Wesseling KH. Continuous cardiac output by pulse contour analysis? Br J Anaesth. 2001;86(4):467鈥?.View Article PubMed
    31.Michard F. Pulse contour analysis: fairy tale or new reality? Crit Care Med. 2007;35(7):1791鈥?.View Article PubMed
    32.Hamzaoui O, Monnet X, Richard C, Osman D, Chemla D, Teboul JL. Effects of changes in vascular tone on the agreement between pulse contour and transpulmonary thermodilution cardiac output measurements within an up to 6-hour calibration-free period. Crit Care Med. 2008;36(2):434鈥?0.View Article PubMed
    33.Langewouters GJ, Wesseling KH, Goedhard WJ. The pressure dependent dynamic elasticity of 35 thoracic and 16 abdominal human aortas in vitro described by a five component model. J Biomech. 1985;18(8):613鈥?0.View Article PubMed
    34.Langewouters GJ, Wesseling KH, Goedhard WJ. The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. J Biomech. 1984;17(6):425鈥?5.View Article PubMed
    35.Ritter S, Rudiger A, Maggiorini M. Transpulmonary thermodilution-derived cardiac function index identifies cardiac dysfunction in acute heart failure and septic patients: an observational study. Crit Care. 2009;13(4):R133.View Article PubMed Central PubMed
    36.鈥?/div>Perny J, Kimmoun A, Perez P, Levy B. Evaluation of cardiac function index as measured by transpulmonary thermodilution as an indicator of left ventricular ejection fraction in cardiogenic shock. Biomed Res Int. 2014;2014:598029. Intersting paper evaluating the relationship between transpulmonary and echocardiographic indicators of left heart function. Transpulmonary indices perform well in predominant left heart failure but underestimate left heart function in patients with right ventricular dysfunction.View Article PubMed Central PubMed
    37.鈥⑩€?/div>Belda FJ, Aguilar G, Teboul JL, Pestana D, Redondo FJ, Malbrain M, et al. Complications related to less-invasive haemodynamic monitoring. Br J Anaesth. 2011;106(4):482鈥?. Large multicentric cohort evaluating complications of transpulmonary thermodilution. Site hematoma and catheter infections were the sole complications reported by incvestigators, with similar incidence as with central venous and arterial catheterization with usual catheters.View Article PubMed
    38.Eisenberg PR, Jaffe AS, Schuster DP. Clinical evaluation compared to pulmonary artery catheterization in the hemodynamic assessment of critically ill patients. Crit Care Med. 1984;12(7):549鈥?3.View Article PubMed
    39.Grissom CK, Morris AH, Lanken PN, Ancukiewicz M, Orme Jr JF, Schoenfeld DA, et al. Association of physical examination with pulmonary artery catheter parameters in acute lung injury. Crit Care Med. 2009;37(10):2720鈥?.View Article PubMed
    40.De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98鈥?04.View Article PubMed
    41.De Backer D, Creteur J, Dubois MJ, Sakr Y, Vincent JL. Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J. 2004;147:91鈥?.View Article PubMed
    42.den Uil CA, Lagrand WK, van der Ent M, Jewbali LS, Cheng JM, Spronk PE, et al. Impaired microcirculation predicts poor outcome of patients with acute myocardial infarction complicated by cardiogenic shock. Eur Heart J. 2010;31:3032鈥?.View Article
    43.Teboul JL, Annane D, Thuillez C, Depret J, Bellissant E, Richard C. Effects of cardiovascular drugs on oxygen consumption/oxygen delivery relationship in patients with congestive heart failure. Chest. 1992;101:1582鈥?.View Article PubMed
    44.Goepfert MS, Reuter DA, Akyol D, Lamm P, Kilger E, Goetz AE. Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med. 2007;33(1):96鈥?03.View Article PubMed
    45.鈥?/div>Mutoh T, Kazumata K, Terasaka S, Taki Y, Suzuki A, Ishikawa T. Impact of transpulmonary thermodilution-based cardiac contractility and extravascular lung water measurements on clinical outcome of patients with Takotsubo cardiomyopathy after subarachnoid hemorrhage: a retrospective observational study. Crit Care. 2014;18(4):482. Patients with Takotsubo after subarachnoid hemorrhage who have a low cardiac function index and high extravascular lung water present a poor neurologic outcome.View Article PubMed Central PubMed
    46.鈥?/div>Mutoh T, Kazumata K, Terasaka S, Taki Y, Suzuki A, Ishikawa T. Early intensive versus minimally invasive approach to postoperative hemodynamic management after subarachnoid hemorrhage. Stroke. 2014;45(5):1280鈥?. Randomized trial of goal directed therapy in patients with subarachnoid hhemorrhage. Goal directed therapy is associated with a better neurologic outcome compared to usual care. View Article PubMed
    47.Wilson J, Woods I, Fawcett J, Whall R, Dibb W, Morris C, et al. Reducing the risk of major elective surgery: randomised controlled trial of preoperative optimisation of oxygen delivery. BMJ. 1999;318:1099鈥?03.View Article PubMed Central PubMed
    48.鈥?/div>Adler C, Reuter H, Seck C, Hellmich M, Zobel C. Fluid therapy and acute kidney injury in cardiogenic shock after cardiac arrest. Resuscitation. 2013;84(2):194鈥?. Small size randomized trial showing improvement in renal function in patients monitored with transpulmonary thermodilution. View Article PubMed
    49.Polonen P, Ruokonen E, Hippelainen M, Poyhonen M, Takala J. A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg. 2000;90(5):1052鈥?.View Article PubMed
    50.鈥⑩€?/div>Trof RJ, Beishuizen A, Cornet AD, de Wit RJ, Girbes AR, Groeneveld AB. Volume-limited versus pressure-limited hemodynamic management in septic and nonseptic shock. Crit Care Med. 2012;40(4):1177鈥?5. Randomized trial comparing pulmonary artery catheter to transpulmonary thermodilution in cricially ill patients. No differneces in outcome were observed in patient with septic shock. In patints with impaired cardiac function, pulmonary artery catheter was associated with lowertime under mechanicl ventilation while survival was not affected.View Article PubMed
    51.Lemaire F, Teboul JL, Cinotti L, Giotto G, Abrouk F, Steg G, et al. Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation. Anaesthesiology. 1988;69:171鈥?.View Article
    52.Vignon P, AitHssain A, Francois B, Preux PM, Pichon N, Clavel M, et al. Echocardiographic assessment of pulmonary artery occlusion pressure in ventilated patients: a transoesophageal study. Crit Care. 2008;12(1):R18.View Article PubMed Central PubMed
  • 作者单位:Daniel De Backer (1)

    1. Department of Intensive Care, CHIREC Hospitals, Universit茅 Libre de Bruxelles, Rue Wayez 35, B-1420 Braine L鈥橝lleud, Brussels, Belgium
  • 刊物主题:Cardiology; Cardiac Surgery; Vascular Surgery; Internal Medicine; Imaging / Radiology;
  • 出版者:Springer US
  • ISSN:1546-9549
文摘
The place of invasive hemodynamic monitoring in patients with acute heart failure is still debated, even though frequently used. Invasive techniques, which include the pulmonary artery catheter and transpulmonary thermodilution, provide important information on cardiac output and intravascular pressures or volume. These techniques should be used in combination with echocardiography and allow nurse-driven semicontinuous hemodynamic monitoring. These techniques are useful not only in the diagnosis of circulatory or respiratory failure but also for the evaluation of the effects of therapies. Admittedly, large-scale randomized trials failed to demonstrate a survival benefit with the pulmonary artery catheter (and were even not yet performed with transpulmonary thermodilution). However, these trials may be subjected to selection bias, as patients from recruiting centers not included in the trial but receiving the pulmonary artery catheter were more severe and had higher mortality rates than patient included in the trial. Hence, invasive techniques may still have a place in selected patients with acute circulatory failure and especially in the most severe cases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700