Plasmonic light trapping for wavelength-scale silicon solar absorbers
详细信息    查看全文
  • 作者:Yinan Zhang ; Min Gu
  • 关键词:solar cells ; light trapping ; plasmonic ; ultrathin Si ; wavelength ; scale
  • 刊名:Frontiers of Optoelectronics in China
  • 出版年:2016
  • 出版时间:June 2016
  • 年:2016
  • 卷:9
  • 期:2
  • 页码:277-282
  • 全文大小:682 KB
  • 参考文献:1.Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nature Materials, 2010, 9(3): 205–213CrossRef
    2.Gu M, Ouyang Z, Jia B, Stokes N, Chen X, Fahim N, Li X, Ventura M, Shi Z. Nanoplasmonics: a frontier of photovoltaic solar cells. Nanophotonics, 2012, 1(3-4): 235–248CrossRef
    3.Zhang Y, Stokes N, Jia B, Fan S, Gu M. Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss. Scientific Reports, 2014, 4: 4939
    4.Zhang Y, Ouyang Z, Stokes N, Jia B, Shi Z, Gu M. Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells. Applied Physics Letters, 2012, 100(15): 151101CrossRef
    5.Zhang Y, Chen X, Ouyang Z, Lu H, Jia B, Shi Z, Gu M. Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating. Optical Materials Express, 2013, 3(4): 489–495CrossRef
    6.Zhang Y, Jia B, Ouyang Z, Gu M. Influence of rear located silver nanoparticle induced light losses on the light trapping of silicon wafer-based solar cells. Journal of Applied Physics, 2014, 116(12): 124303CrossRef
    7.Derkacs D, Lim S, Matheu P, Mar W, Yu E. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Applied Physics Letters, 2006, 89(9): 093103CrossRef
    8.Eminian C, Haug F, Cubero O, Niquille X, Ballif C. Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles. Progress in Photovoltaics: Research and Applications, 2011, 19(3): 260–265CrossRef
    9.Chen X, Jia B, Saha J K, Cai B, Stokes N, Qiao Q, Wang Y, Shi Z, Gu M. Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles. Nano Letters, 2012, 12(5): 2187–2192CrossRef
    10.Lare M, Lenzmann F, Verschuuren M, Polman A. Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells. Applied Physics Letters, 2012, 101(22): 221110CrossRef
    11.Nakayama K, Tanabe K, Atwater H. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Applied Physics Letters, 2008, 93(12): 121904CrossRef
    12.Beck F, Mokkapati S, Catchpole K. Plasmonic light-trapping for Si solar cells using self-assembled Ag nanoparticles. Progress in Photovoltaics: Research and Applications, 2010, 18(7): 500–504CrossRef
    13.Yang Y, Pillai S, Mehrvarz H, Kampwerth H, Ho-Baillie A, Green M. Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons. Solar Energy Materials and Solar Cells, 2012, 101: 217–226CrossRef
    14.Temple T, Mahanama G, Reehal H, Bagnall D. Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells. Solar Energy Materials and Solar Cells, 2009, 93(11): 1978–1985CrossRef
    15.Xu R, Wang X, Song L, Liu W, Ji A, Yang F, Li J. Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells. Optics Express, 2012, 20(5): 5061–5068CrossRef
    16.Chen X, Jia B, Zhang Y, Gu M. Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets. Light, Science & Applications, 2013, 2(8): e92CrossRef
    17.Fahim N, Ouyang Z, Jia B, Zhang Y, Shi Z, Gu M. Enhanced photocurrent in crystalline silicon solar cells by hybrid plasmonic antireflection coatings. Applied Physics Letters, 2012, 101(26): 261102CrossRef
    18.Fahim N, Ouyang Z, Zhang Y, Jia B, Shi Z, Gu M. Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process. Optical Materials Express, 2012, 2(2): 190–204CrossRef
    19.Hägglund C, Zäch M, Petersson G, Kasemo B. Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Applied Physics Letters, 2008, 92(5): 053110CrossRef
    20.Grandidier J, Callahan D M, Munday J N, Atwater H A. Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres. Advanced Materials, 2011, 23(10): 1272–1276CrossRef
    21.Kang G, Park H, Shin D, Baek S, Choi M, Yu D H, Kim K, Padilla WJ. Broadband light-trapping enhancement in an ultrathin film a-Si absorber using whispering gallery modes and guided wave modes with dielectric surface-textured structures. Advanced Materials, 2013, 25(18): 2617–2623CrossRef
    22.Brongersma M L, Cui Y, Fan S. Light management for photovoltaics using high-index nanostructures. Nature Materials, 2014, 13(5): 451–460CrossRef
    23.Spinelli P, Polman A. Light trapping in thin crystalline Si solar cells using surface Mie scatters. IEEE Journal of Photovoltaics, 2014, 4(2): 554–559CrossRef
    24.Kim I, Jeong D S, Lee WS, Kim WM, Lee T S, Lee D K, Song J H, Kim J K, Lee K S. Silicon nanodisk array design for effective light trapping in ultrathin c-Si. Optics Express, 2014, 22(Suppl 6): A1431–A1439CrossRef
    25.Wang K X, Yu Z, Liu V, Cui Y, Fan S. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and lighttrapping nanocone gratings. Nano Letters, 2012, 12(3): 1616–1619CrossRef
    26.Jeong S, McGehee M D, Cui Y. All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency. Nature Communications, 2013, 4: 2950
    27.Branham MS, Hsu WC, Yerci S, Loomis J, Boriskina S V, Hoard B R, Han S E, Chen G. 15.7% efficient 10-mm-thick crystalline silicon solar cells using periodic nanostructures. Advanced Materials, 2015, 27(13): 2182–2188CrossRef
    28.Kwon J Y, Lee D H, Chitambar M, Maldonado S, Tuteja A, Boukai A. High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates. Nano Letters, 2012, 12(10): 5143–5147CrossRef
    29.Karakasoglu I, Wang K, Fan S. Optical-electronic analysis of the intrinsic behaviors of nanostructured ultrathin crystalline silicon solar cells. ACS Photonics, 2015, 2(7): 883–889CrossRef
    30.Yu Z, Raman A, Fan S. Fundamental limit of nanophotonic light trapping in solar cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(41): 17491–17496CrossRef
    31.FDTD solutions, Lumerical, Toronto, Canada
    32.Palik E. Handbook of Optical Constants of Solids. London: Elsevier, 1988
    33.Green M. Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficient. Solar Energy Materials and Solar Cells, 2008, 92(11): 1305–1310CrossRef
  • 作者单位:Yinan Zhang (1)
    Min Gu (1) (2)

    1. Centre for Micro-Photonics, Faculty of Science, Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn VIC, 3122, Australia
    2. Artificial-Intelligence Nanophotonics Laboratory, School of Science, RMIT University, Melbourne VIC, 3001, Australia
  • 刊物类别:Engineering
  • 刊物主题:Electronic and Computer Engineering
    Electromagnetism, Optics and Lasers
    Biomedical Engineering
    Chinese Library of Science
  • 出版者:Higher Education Press, co-published with Springer-Verlag GmbH
  • ISSN:2095-2767
文摘
Light trapping is of critical importance for constructing high efficiency solar cells. In this paper, we first reviewed the progress we made on the plasmonic light trapping on Si wafer solar cells, including Al nanoparticle (NP)/SiN x hybrid plasmonic antireflection and the Ag NP light trapping for the long-wavelength light in ultrathin Si wafer solar cells. Then we numerically explored the maximum light absorption enhancement by a square array of Ag NPs located at the rear side of ultrathin solar cells with wavelength-scale Si thickness. Huge absorption enhancement is achieved at particular long wavelengths due to the excitation of the plasmon-coupled guided resonances. The photocurrent generated in 100 nm thick Si layers is 6.8 mA/cm2, representing an enhancement up to 92% when compared with that (3.55 mA/cm2) of the solar cells without the Ag NPs. This study provides the insights of plasmonic light trapping for ultrathin solar cells with wavelength-scale Si thickness.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700