Plasma Triggered Grain Coalescence for Self-Assembly of 3D Nanostructures
详细信息    查看全文
  • 作者:Chunhui Dai ; Daeha Joung ; Jeong-Hyun Cho
  • 关键词:3D nanostructures ; Grain coalescence ; Etching profile ; Self ; assembly
  • 刊名:Nano-Micro Letters
  • 出版年:2017
  • 出版时间:July 2017
  • 年:2017
  • 卷:9
  • 期:3
  • 全文大小:3964KB
  • 刊物类别:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 刊物主题:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2150-5551
  • 卷排序:9
文摘
Grain coalescence has been applied in many areas of nanofabrication technology, including modification of thin-film properties, nanowelding, and self-assembly of nanostructures. However, very few systematic studies of self-assembly using the grain coalescence, especially for three-dimensional (3D) nanostructures, exist at present. Here, we investigate the mechanism of plasma triggered grain coalescence to achieve the precise control of nanoscale phase and morphology of the grain coalescence induced by exothermic energy. Exothermic energy is generated through etching a silicon substrate via application of plasma. By tuning the plasma power and the flow rates of reactive gases, different etching rates and profiles can be achieved, resulting in various morphologies of grain coalescence. Balancing the isotropic/anisotropic substrate etching profile and the etching rate makes it possible to simultaneously release 2D nanostructures from the substrate and induce enough surface tension force, generated by grain coalescence, to form 3D nanostructures. Diverse morphologies of 3D nanostructures have been obtained by the grain coalescence, and a strategy to achieve self-assembly, resulting in desired 3D nanostructures, has been proposed and demonstrated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700