Study of triisobutylaluminum as cocatalyst and processing parameters on ethylene polymerization performance of α-diimine nickel(II) complex by response surface method
详细信息    查看全文
  • 作者:H. Arabi ; M. S. Beheshti ; M. Yousefi ; N. Ghasemi Hamedani…
  • 关键词:α ; Diimine ligands ; Ni(II) complex ; Response surface method (RSM) ; Ethylene polymerization ; Chlorine ; free alkyl aluminum
  • 刊名:Polymer Bulletin
  • 出版年:2013
  • 出版时间:October 2013
  • 年:2013
  • 卷:70
  • 期:10
  • 页码:2765-2781
  • 全文大小:713KB
  • 参考文献:1. Vasile C (2000) Handbook of polyolefins. Marcel Decker Inc, New York CrossRef
    2. Ittel SD, Johnson LK, Brookhart M (2000) Late-metal catalysts for ethylene homo- and copolymerization. Chem Rev 100:1169-204 CrossRef
    3. Camacho DH, Guan Z (2010) Designing late-transition metal catalysts for olefin insertion polymerization and copolymerization. Chem Commun 46(42):7879-893 CrossRef
    4. Nakamura A, Ito Sh, Nozaki K (2009) Coordination–insertion copolymerization of fundamental polar monomers. Chem Rev 109:5215-244 CrossRef
    5. Azoulay JD, Koretz ZA, Wu G, Bazan GC (2010) Well-defined cationic methallyl a-keto-b-diimine complexes of Nickel. Angew Chem Int Ed. 49:7890-894 CrossRef
    6. Brookhart M, Johnston LK, Killian CM, Mecking S, Tempel DJ (1996) Palladium(II)- and Nickel(II)-catalyzed olefin polymerization. Polym Prep 37:254-55
    7. Guan Z, Popeney CS (2009) Recent progress in late transition metal α-diimine catalysts for olefin polymerization. Top Organomet Chem 26:179-20 CrossRef
    8. Mauler RS, De Souza RF, Vesccia DVV, Simon LC (2000) Effect of the co-catalyst on the polymerization of ethylene and styrene by nickel-diimine complexes. Macromol Rapid Commun 21:458-63 CrossRef
    9. Correia SG, Marques MM, Ascenso JR (1999) Polymerization with TMA-protected polar vinyl comonomers. II. Catalyzed by nickel complexes containing α-diimine-type ligands. J Polym Sci Part A Polym Chem 37:2471-480 CrossRef
    10. Marques MM, Fernandes S, Correia SG (2000) Synthesis of acrylamide/olefin copolymers by a diimine nickel catalyst. Macromol Chem Phys 201:2464-468 CrossRef
    11. Kricheldorf HR, Nuyleen O, Swift G (2004) Handbook of polymer synthesis: second edition (plastics engineering). CRC Press, London CrossRef
    12. Souza RF, Casagrande OL Jr (2001) Recent advances in olefin polymerization using binary catalyst systems. Macromol Rapid Commun 22:1293-301 CrossRef
    13. Kumar KR, Sivaram S (2000) Ethylene polymerization using iron (II) bis (imino) pyridyl and nickel (diimine) catalysts: effect of cocatalysts and reaction parameters. Marcromol Chem Phys 201:1513-520 CrossRef
    14. Svejda SA, Brookhart M (1999) Ethylene oligomerization and propylene dimerization using cationic (α-diimine)nickel(II) catalysts. Organometallics 18:65-4 CrossRef
    15. Ferreira LC Jr, Albuquerque Melo Jr P, Crossetti GL, Galland GB, Nele M, Carlos Pinto J (2010) Polymerization of ethylene by (α-diimine) nickel catalyst and statistical analysis of the effects of reaction conditions. Polym Eng Sci 50:1797-808 CrossRef
    16. Maldanis RJ, Wood JS, Chandrasekaran A, Rausch MD, Chien JCW (2002) The formation and polymerization behavior of Ni(II) α-diimine complexes using various aluminum activators. J Organomet Chem 645:158-67 CrossRef
    17. Simon LC, Mauler RS, De Souza RF (1999) Effect of the alkylaluminum cocatalyst on ethylene polymerization by a nickel–diimine complex. J Polym Sci Pol Chem 37:4656-663 CrossRef
    18. MacKenzie PB, Moody LS, Killian CM, Lavoie GG (1999) Supported group 8-10 transition metal olefin polymerization catalysts, WO9962968
    19. Laine TV, Lappalainen K, Liimatta J, Aitola E, Lofgren B, Leskela M (1999) Polymerization of ethylene with new diimine complexes of late transition metals. Macromol Rapid Commun 20:487-91 CrossRef
    20. Musaev DG, Froese RDJ, Svensson M, Morokumo K (1997) A density functional study of the mechanism of the diimine–nickel-catalyzed ethylene polymerization reaction. J Am Chem Soc 119:367-74 CrossRef
    21. De Camargo Forte MM, Vieira da Cunha FO, Zimnoch dos Santos JH, Zacca JJ (2003) Ethylene and 1-butene copolymerization catalyzed by a Ziegler–Natta/Metallocene hybrid catalyst through a 23 factorial experimental design. Polymer 44:1377-384 CrossRef
    22. Nassiri H, Arabi H, Hakim S, Bolandi S (2011) Polymerization of propylene with Ziegler–Natta catalyst: optimization of operating conditions by response surface methodology (RSM). Polym Bull 67:1393-411 CrossRef
    23. Carrero A, Van Grieken R, Paredes B (2011) Ethylene polymerization with methylaluminoxane/(nBuCp) 2ZrCl2 catalyst supported on silica and silica-alumina at different AlMAO/Zr molar ratios. J Appl Polym Sci 120:599-06 CrossRef
    24. Ahmadi M, Jamjah R, Nekoomanesh M, Zohuri G, Arabi H (2007) Investigation of ethylene polymerization using soluble Cp2ZrCl2/MAO catalytic system via response surface methodology. Iran Polym J 16:133-40
    25. Najafi M, Haddadi-Asl V (2007) Effects of reaction and processing parameters on ethylene polymerization using different Ziegler–Natta catalysts: employment of Taguchi experimental design and response surface method. Chin J Polym Sci 25:153-62 CrossRef
    26. Ghasemi Hamedani N, Arabi H, Zohuri GH, Mair FS, Jolleys A (2013) Synthesis and structural characterization of a nickel(II) precatalyst bearing a β-triketimine ligand and study of its ethylene polymerization performance using response surface methods. J Polym Sci Pol Chem. doi:10.1002/pola.26522
    27. Myers RH, Montgomery DC (2002) Response surface methodology: process and product optimization using designed experiments, 2nd edn. Wiley, New York
    28. Minitab@Release 15 (2007) Design of experiments, user’s manual. Minitab Inc, USA
    29. Paulovicoa A, El-Ayaan U, shibayama K (2001) Mixed-Ligand copper(II)complexes wih the rigid bidetate bis(N-arylimino)acenaphthene ligand: synthesis, spectroscopic and X-ray structural characterization. Eur J Inorg Chem, 2641-2646
    30. Liu Jingyu, Li Yanguo, Li Yuesheng, Ninghai Hu (2008) Ethylene polymerization by (α-diimine) nickel (II) complexes bearing different substituents on para-position of imines activated with MMAO. J Appl poly sci 109:700-07 CrossRef
    31. Asiaban S, Moradian S (2011) Investigation of tensile properties and dyeing behavior of various polypropylene/polyamide 6 blends using a mixture experimental design. Dyes Pigments 92:642-53 CrossRef
    32. AlObaidi F, Ye Z, Zhu S (2004) Ethylene polymerization with homogeneous nickel–diimine catalysts: effects of catalyst structure and polymerization conditions on catalyst activity and polymer properties. Polymer 45:6823-829 CrossRef
    33. Gates DP, Svejda SA, O?ate E, Killian CM, Johnson LK, White PS, Brookhart M (2000) Synthesis of branched polyethylene using (α-diimine)nickel(II) catalysts: influence of temperature, ethylene pressure, and ligand structure on polymer properties. Macromolecules 33:2320-334 CrossRef
  • 作者单位:H. Arabi (1)
    M. S. Beheshti (1) (2)
    M. Yousefi (2)
    N. Ghasemi Hamedani (1) (3)
    M. Ghafelebashi (3)

    1. Department of Polymerization Engineering, Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, Iran
    2. Department of Basic Sciences, Chemistry Group, Shahre Rey Branch, Islamic Azad University, P.O. Box 18155-144, Tehran, Iran
    3. National Petrochemical Company (NPC), Research and Technology Company, Tehran, Iran
  • ISSN:1436-2449
文摘
In this research work, 1,4-bis(2,6-diisopropylphenyl)-acenaphthenediimine-diboromonickel(II) (1) complex was synthesized and its ethylene polymerization in the presence of triisobutylaluminum (TIBA) as activator was studied. The effects of three critical factors [polymerization temperature (T), cocatalyst to catalyst ratio (CC) and pressure (P)] on the average molecular weight and crystallinity of the final polymers and also reaction yields as the response variables were evaluated with the help of empirical statistical models and visualized with the response surface method. The results show that activity of 1 as well as M w and crystallinity of the resulting polymers are influenced strongly by the polymerization factors. The activity of TIBA-activated catalyst 1 reaches a maximum at 10?°C after raising pressure and CC to 7?bar and 3,000, respectively. This activity is much higher than previously reported activity for this catalyst. Furthermore, a polymerization condition for reaching desirable responses is predicted and experimentally verified.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700