Peatland carbon stocks and accumulation rates in the Ecuadorian páramo
详细信息    查看全文
  • 作者:John A. Hribljan ; Esteban Suárez ; Katherine A. Heckman…
  • 关键词:Peatland ; Páramo ; Carbon ; Accumulation rates ; Tuberas
  • 刊名:Wetlands Ecology and Management
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:24
  • 期:2
  • 页码:113-127
  • 全文大小:1,762 KB
  • 参考文献:Balslev H, Luteyn JL (1992) Páramo: an Andean ecosystem under human influence. Academic Press, London
    Beck E (1994) Cold tolerance in tropical alpine plants. Tropical alpine environments. Plant form and function. Cambridge University Press, Cambridge, pp 77–110CrossRef
    Belyea LR, Baird AJ (2006) Beyond “the limits to peat bog growth”: cross-scale feedback in peatland development. Ecol Monogr 76:299–322CrossRef
    Belyea LR, Malmer N (2004) Carbon sequestration in peatland: patterns and mechanisms of response to climate change. Glob Change Biol 10:1043–1052CrossRef
    Benavides JC (2014) The effect of drainage on organic matter accumulation and plant communities of high-altitude peatlands in the Colombian tropical Andes. Mires Peat 15:1–15
    Bosnian AF, Molen PC, Young R, Cleef AM (1993) Ecology of a paramo cushion mire. J Veg Sci 4:633–640CrossRef
    Buytaert W, De Bièvre B (2012) Water for cities: the impact of climate change and demographic growth in the tropical Andes. Water Resour Res 48:1–13
    Buytaert W, Célleri R, De Bièvre B, Cisneros F, Wyseure G, Deckers J, Hofstede R (2006) Human impact on the hydrology of the Andean páramos. Earth Sci Rev 79:53–72CrossRef
    Buytaert W, Cuesta-Camacho F, Tobón C (2011) Potential impacts of climate change on the environmental services of humid tropical alpine regions. Global Ecol Biogeogr 20:19–33CrossRef
    Cavieres L, Badano E (2007) Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the high Andes of central Chile. Arct Antarct Alp Res 39:229–236CrossRef
    Chambers FM, Beilman DW, Yu Z (2011) Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics. Mires Peat 7:1–10
    Chimner RA (2000) Carbon dynamics of Southern Rocky Mountain fens. Dissertation, Colorado State University
    Chimner RA, Karberg JM (2008) Long-term carbon accumulation in two tropical mountain peatlands, Andes Mountains, Ecuador. Mires Peat 3:1–10
    Clymo RS (1984) The Limits to Peat Bog Growth. Philos T Roy Soc Lon B 303:605–654CrossRef
    Cooper DJ, Wolf EC, Colson C, Vering W, Granda A, Meyer M (2010) Alpine peatlands of the Andes, Cajamarca, Peru. Arct Antarct Alp Res 41:19–33CrossRef
    Cooper DJ, Chimner RA, Merritt DM (2012) Western Mountain Wetlands. In: Batzer DP, Baldwin AH (eds) Wetland Habitats of North America: Ecology and Conservation Concerns. University of California Press, Berkeley, pp 313–328
    Cooper DJ, Kaczynski K, Slayback D, Yager K (2015) Growth and organic carbon production in peatlands dominated by Distichia muscoides, Bolivia, South America. Arctic, Antarctic, and Alpine Research. 47:505–510
    Davis JC, Proctor ID, Southon JR, Caffee MW, Heikkinen DW, Roberts ML, Moore TL, Turteltaub KW, Nelson DE, Loyd DH, Vogel JS (1990) LLNL/US AMS facility and research program. Nucl Instrum Meth B 52:269–272CrossRef
    Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 4:293–297
    Draper FC, Roucoux KH, Lawson IT, Mitchard ET, Coronado ENH, Lähteenoja O, Baker TR (2014) The distribution and amount of carbon in the largest peatland complex in Amazonia. Environ Res Lett 912:1–12
    Farley KA, Kelly EF, Hofstede RG (2004) Soil organic carbon and water retention after conversion of grasslands to pine plantations in the Ecuadorian Andes. Ecosystems 7:729–739CrossRef
    Hall ML, Mothes P (2008) The Chacana caldera complex. Collapse calderas workshop. IOP conference series: earth and environmental science, vol 3, pp 1755–1307
    Hall ML, Samaniego P, Le Pennec JL, Johnson JB (2008) Ecuadorian Andes volcanism: a review of Late Pliocene to present activity. J Volcanol Geotherm Res 176:1–6CrossRef
    Hilbert DW, Roulet N, Moore T (2000) Modelling and analysis of peatlands as dynamical systems. J Ecol 88:230–242CrossRef
    Hogg AG, Hua Q, Blackwell PG, Niu M, Buck CE, Guilderson TP, Heaton TJ, Palmer JG, Reimer PJ, Reimer RW, Turney CS (2013) SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55:1–15
    Holden J, Burt TP (2002) Laboratory experiments on drought and runoff in blanket peat. Eur J Soil Sci 53:675–690CrossRef
    Hribljan JA, Cooper DJ, Sueltenfuss J, Wolf EC, Heckman KA, Lilleskov EA, Chimner RA (2015) Carbon storage and long-term rate of accumulation in high-altitude Andean peatlands of Bolivia. Mires and Peat, vol 15. Art 12
    Hua Q, Barbetti M, Rakowski AZ (2013) Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55:2059–2072
    Jomelli V, Favier V, Rabatel A, Brunstein D, Hoffmann G, Francou B (2009) Fluctuations of glaciers in the tropical Andes over the last millennium and palaeoclimatic implications: a review. Palaeogeogr Palaeoclimatol Palaeoecol 281:269–282CrossRef
    Lähteenoja O, Ruokolainen K, Schulman L, Oinonen M (2009) Amazonian peatlands: an ignored C sink and potential source. Glob Change Biol 15:2311–2320CrossRef
    McCormac FG, Hogg AG, Blackwell PG, Buck CE, Higham TFG, Reimer PJ (2004) SHCal04 Southern Hemisphere Calibration 0–1000 cal BP. Radiocarbon 46:1087–1092
    Michelutti N, Wolfe AP, Cooke CA, Hobbs WO, Vuille M, Smol JP (2015) Climate change forces new ecological states in tropical Andean lakes. PLoS One 10:1–10CrossRef
    Mothes P, Hall ML (2008) The plinian fallout associated with Quilotoa’s 800 year BP eruption, Ecuadorian Andes. J Volcanol Geotherm Res 176:56–69CrossRef
    Page SE, Wűst RAJ, Weiss D, Rieley JO, Shotyk W, Limin SH (2004) A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J Quat Sci 19:625–635CrossRef
    Poulenard J, Podwojewski P, Herbillon AJ (2003) Characteristics of non-allophanic Andisols with hydric properties from the Ecuadorian páramos. Geoderma 117:267–281CrossRef
    Schittek K (2014) Cushion peatlands in the high Andes of northwestern Argentina as archives for palaeoenvironmental research. Dissertation, Cramer in der Gebr.-Borntraeger-Verlag-Buchh
    Schubert C, Clapperton CM (1990) Quaternary glaciations in the northern Andes (Venezuela, Colombia and Ecuador). Quat Sci Rev 9:123–135CrossRef
    Smith JA, Seltzer GO, Rodbell DT, Klein AG (2005) Regional synthesis of last glacial maximum snowlines in the tropical Andes, South America. Quat Int 138:145–167CrossRef
    Soil Survey Staff (1975) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, USDA-SCS Agric. Handb. No. 436. U.S. Govt. Print. Office, Washington, DC
    Squeo FA, Warner BG, Aravena R, Espinoza D (2006) Bofedales: high altitude peatlands of the central Andes. Rev Chil Hist Nat 79:245–255CrossRef
    Stuiver M, Polach HA (1977) Discussion: reporting of 14C data. Radiocarbon 19:355–363
    Stuiver M, Reimer PJ (1993) Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35:215–230
    Tonneijck FH, Jansen B, Nierop KGJ, Verstraten JM, Sevink J, De Lange L (2010) Towards understanding of carbon stocks and stabilization in volcanic ash soils in natural Andean ecosystems of northern Ecuador. Eur J Soil Sci 61:392–405CrossRef
    Urbina JC, Benavides JC (2015) Simulated small scale disturbance increases decomposition rates and facilitates invasive species encroachment in a high elevation tropical Andean peatland. Biotropica 47:143–151CrossRef
    Vogel JS, Southon JR, Nelson DE (1987) Catalyst and binder effects in the use of filamentous graphite for AMS. Nucl Instrum Meth B 29:50–56CrossRef
    Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS (2008) Climate change and tropical Andean glaciers: past, present and future. Earth Sci Rev 89:79–96CrossRef
  • 作者单位:John A. Hribljan (1)
    Esteban Suárez (2)
    Katherine A. Heckman (3)
    Erik A. Lilleskov (3)
    Rodney A. Chimner (1)

    1. School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
    2. Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
    3. USDA Forest Service Northern Research Station, Houghton, MI, 49931, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Hydrobiology
    Evolutionary Biology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1572-9834
文摘
The páramo is a high altitude tropical Andean ecosystem that contains peatlands with thick horizons of carbon (C) dense soils. Soil C data are sparse for most of the páramo, especially in peatlands, which limits our ability to provide accurate regional and country wide estimates of C storage. Therefore, the objective of our research was to quantify belowground C stocks and accumulation rates in páramo peatland soils in two regions of northeastern Ecuador. Peatland soil cores were collected from Antisana Ecological Reserve and Cayambe-Coca National Park. We measured soil C densities and 14C dates to estimate soil accumulation rates. The mean peatland soil depth across both regions was 3.8 m and contained an estimated mean C storage of 1282 Mg ha−1. Peatlands older than 3000 cal. year BP had a mean long-term C accumulation rate of 26 g m−2 year−1, with peatlands younger than 500 cal. year BP displaying mean recent rates of C accumulation of 134 g m−2 year−1. These peatlands also receive large inputs of mineral material, predominantly from volcanic deposition, that has created many interbedded non-peat mineral soil horizons that contained 48 % of the soil C. Because of large C stocks in Ecuadorian mountain peatlands and the potential disturbance from land use and climate change, additional studies are need to provide essential baseline assessments and estimates of C storage in the Andes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700