Management driven changes in carbon mineralization dynamics of tropical peat
详细信息    查看全文
  • 作者:Jyrki Jauhiainen ; Hanna Silvennoinen ; Mari Könönen ; Suwido Limin…
  • 刊名:Biogeochemistry
  • 出版年:2016
  • 出版时间:August 2016
  • 年:2016
  • 卷:129
  • 期:1-2
  • 页码:115-132
  • 全文大小:730 KB
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geochemistry
    Biochemistry
    Soil Science and Conservation
    Terrestrial Pollution
  • 出版者:Springer Netherlands
  • ISSN:1573-515X
  • 卷排序:129
文摘
Extensive draining at tropical ombrotrophic peatlands in Southeast Asia has made these landscapes a global ‘hot spots’ for greenhouse gas emissions. Management practices and fires have changed substrate status, which affects microbial processes. Here, we present data on how change in management practices affect carbon (C) mineralization processes at these soils. We compared the C mineralization potentials of undrained swamp forest peat to those of abandoned peat (deforested, drained and burned peatlands in degraded condition) at various depths, with and without additional substrates (glucose, glutamate and nitrate), under oxic and anoxic conditions through ex situ experiments. Carbon mineralization (CO2 and CH4 production) rates were higher in the forest peat, with higher litter deposition and C availability. Production rates decreased with peat depth coinciding with decreasing availability of labile C. Consequently, the increase in production rates after labile substrate addition was relatively modest in forest peat as compared to the abandoned site and from the top layers as compared to deeper layers. Methanogenesis had little importance in total C loss. Adding labile C and nitrogen (N) enhanced heterotrophic CO2 production more than only addition of N. Surprisingly, oxygen availability did not limit CO2 production rates, but anoxic respiration also yielded substantial rates, especially at the forest peat. Flooding of these sites will therefore reduce, but not completely cease, peat C-loss. Reintroduced vegetation and fertilization in abandoned peatlands can enrich the peat with labile C and N compounds and thus lead to increased microbiological activity.KeywordsAnoxiaCO2 and CH4 production kineticsPersistence of soil organic matterLand useKalimantanLabile carbon

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700