Stokes–Brinkman–Darcy Solutions of Bimodal Porous Flow Across Periodic Array of Permeable Cylindrical Inclusions: Cell Model, Lubrication Theory and LBM/FEM Numerical Simulations
详细信息    查看全文
  • 作者:Goncalo Silva ; Irina Ginzburg
  • 关键词:Stokes–Brinkman–Darcy solutions ; Bimodal porous flow systems ; Cell model ; Lubrication theory ; TRT lattice Boltzmann method
  • 刊名:Transport in Porous Media
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:111
  • 期:3
  • 页码:795-825
  • 全文大小:1,577 KB
  • 参考文献:Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)
    Allan, F.M., Hamdan, M.H.: Fluid mechanics of the interface region between two porous layers. Appl. Math. Comput. 128, 37–43 (2002)CrossRef
    Auriault, J.-L.: On the domain of validity of Brinkman equation. Transp. Porous Media 79(2), 215–223 (2009a)
    Auriault, J.-L.: About the Beavers and Joseph boundary condition. Transp. Porous Media 83, 257–266 (2009b)
    Batchelor, G.K.: Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)
    Beavers, G.S., Joseph, D.D.: Boundary condition at a naturally permeable wall. J. Fluid Mech. 30, 197 (1967)CrossRef
    Bejan, A., Dincer, I., Lorente, S., Miguel, A.F., Reis, A.H.: Porous and Complex Flow Structures in Modern Technologies. Springer, New York (2004)CrossRef
    Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A 1, 27–34 (1949a)CrossRef
    Brinkman, H.C.: On the permeability of media consisting of closely packed porous particles. Appl. Sci. Res. A 1, 81–86 (1949b)CrossRef
    Brown, G.R.: Creeping Flow of Fluids Through Assemblages of Elliptic Cylinders and Its Application to the Permeability of Fiber Mats. PhD thesis, Institute of Paper Chemistry, Appleton, Wisconsin, USA (1974)
    Bruschke, M.V., Advani, S.G.: Flow of generalized Newtonian fluids across a periodic array of cylinders. J. Rheol. 37, 479–498 (1993)CrossRef
    COMSOL: Multiphysics User’s Guide. USA (2012)
    Dagan, G., Fiori, A., Janković, I.: Flow and Transport in highly heterogeneous formations: 1. Conceptual framework and validity of first-order approximations. Water Resour. Res. 39(9), 1268 (2003)CrossRef
    Davis, R.H., Stone, H.D.: Flow through beds of porous particles. Chem. Eng. Sci. 48(23), 3993–4005 (1993)CrossRef
    Deo, S.: Stokes flow past a swarm of porous circular cylinders with Happel and Kuwabara boundary conditions. Sâdhana 29(4), 381–387 (2004)CrossRef
    Deo, S., Yadav, P.K.: Stokes flow past a swarm of porous nanocylindrical particles enclosing a solid core. Int. J. Math. Math. Sci. 2008, Article D651910 (2008)
    Deo, S., Yadav, P.K., Tiwari, A.: Slow viscous flow through a membrane built up from porous cylindrical particles with an impermeable core. Appl. Math. Model. 34, 1329–1343 (2010)CrossRef
    Deo, S., Filipov, A.N., Tiwari, A., Vasin, S.I., Starov, V.M.: Hydrodynamic permeability of aggregates of porous particles with an impermeable core. Adv. Colloid Interface Sci. 164, 21–27 (2011)CrossRef
    Drummond, J.E., Tahir, M.I.: Laminar viscous flow through regular arrays of parallel solid cylinders. Int. J. Multiph. Flow 10(5), 172–188 (1987)
    Filipov, A.N., Vasin, S.I., Starov, V.M.: Mathematical modeling of the hydrodynamic permeability of a membrane built up from porous particles with a permeable shell. Colloids Surf. A 282–283, 272–278 (2006)CrossRef
    Freed, D.M.: Lattice Boltzmann method for macroscopic porous media modeling. Int. J. Mod. Phys. C 9(8), 1491–1503 (1998)CrossRef
    Ginzburg, I.: Consistent lattice Boltzmann schemes for the Brinkman model of porous flow and infinite Chapman–Enskog expansion. Phys. Rev. E 77, 066704 (2008)CrossRef
    Ginzburg, I.: Comment on “An improved gray Lattice Boltzmann model for simulating fluid flow in multi-scale porous media”: Intrinsic links between LBE Brinkman schemes. Adv. Water Resour. (2014) doi:10.​1016/​j.​advwatres.​2014.​05.​007
    Ginzburg, I., Silva, G., Talon, L.: Analysis and improvement of Brinkman lattice Boltzmann schemes: bulk, boundary, interface. Similarity and distinctness with the finite-elements in heterogeneous porous media. Phys. Rev. E 91, 023307 (2015)CrossRef
    Givler, R.C., Altobelli, S.A.: A determination of the effective viscosity for the Brinkman–Forchheimer flow model. J. Fluid Mech. 258, 335–370 (1994)CrossRef
    Gray, W.G.: A derivation of the equations for multi-phase transport. Chem. Eng. Sci. 30, 229–233 (1975)CrossRef
    Grosan, T., Postelnicu, A., Pop, I.: Brinkman flow of a viscous fluid through a spherical porous medium embedded in another porous medium. Transp. Porous Media 81, 89–103 (2010)CrossRef
    Haber, S., Mauri, R.: Boundary conditions for Darcy’s flow through porous media. Int. J. Multiph. Flow 9, 561–574 (1983)CrossRef
    Hannukainen, A., Juntunen, M., Stenberg, R.: Computations with finite element methods for the Brinkman problem. Comput. Geosci. 15, 155–166 (2011)CrossRef
    Happel, J.: Viscous flow relative to arrays of cylinders. AIChE J. 5(2), 174–177 (1959)CrossRef
    Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics. Martinus Nijoff, The Hague (1983)
    Hashimoto, H.: On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech. 5, 317–328 (1959)CrossRef
    Ingham, D.B., Pop, I.: Transport Phenomena in Porous Media. Pergamon, Oxford (1998)
    Jackson, G.W., James, D.F.: The permeability of fibrous porous media. Can. J. Chem. Eng. 64, 364–374 (1986)CrossRef
    Kang, Q.J., Zhang, D.X., Chen, S.Y.: Unified lattice Boltzmann method for flow in multiscale porous media. Phys. Rev. E 66(5), 056307 (2002)CrossRef
    Keller, J.B.: Viscous flow through a grating or lattice of cylinders. J. Fluid Mech. 18(1), 94–96 (1964)CrossRef
    Khalili, A.D., Arns, J.-Y., Hussain, F., Cinar, Y., Pinczewski, W., Arns, C.H.: Permeability upscaling for carbonates from the pore scale by use of multiscale X-ray-CT images. SPE Reserv. Eval. Eng. 16, 353 (2013)CrossRef
    Koplik, J., Levine, H., Zee, A.: Viscosity renormalization in the Brinkman equation. Phys. Fluids 26, 1864 (1983)CrossRef
    Krotkiewski, M., Ligaarden, I.S., Lie, K.-A., Schmid, D.W.: On the importance of the Stokes–Brinkman equations for computing effective permeability in carbonate karst reservoirs. Commun. Comput. Phys. 10(5), 1315–1332 (2011)
    Kuwabara, S.: The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small reynolds numbers. J. Phys. Soc. Jpn. 14(4), 527–532 (1959)CrossRef
    Kvashnin, A.G.: Cell model of a suspension of spherical particles. Fluid Dyn. 14, 598 (1979)CrossRef
    Li, R., Yang, Y.S., Pan, J., Pereira, G.G., Taylor, J.A., Clennel, B., Zou, C.: Lattice Boltzmann modeling of permeability in porous materials with partially percolating voxels. Phys. Rev. E 90, 033301 (2014)CrossRef
    Lundgren, T.S.: Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mech. 51, 273–299 (1972)CrossRef
    Martys, N., Bentz, D.P., Garboczi, E.J.: Computer simulation study of the effective viscosity in Brinkman’s equation. Phys. Fluids 6(4), 1434–1439 (1994)CrossRef
    Mehta, G.D., Morse, T.F.: Flow through charged membranes. J. Chem. Phys. 63(5), 1878–1889 (1975)CrossRef
    Nabovati, A., Amon, C.H.: Hydrodynamic boundary condition at open-porous interface. Transp. Porous Media 96, 83 (2012)CrossRef
    Neale, G., Nader, W.: Practical significance of Brinkmans extension of Darcys law: coupled parallel flows with a channel and a bounding porous medium. Can. J. Chem. Eng. 52, 475–478 (1974)CrossRef
    Neale, G., Epstein, N., Nader, W.: Creeping flow relative to permeable spheres. Chem. Eng. Sci. 28, 1865–1874 (1973)CrossRef
    Nield, D.A., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)
    Ochoa-Tapia, J.A., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid I. Theoretical development. Int. J. Heat Mass Transf. 38, 2635 (1995)CrossRef
    Ochoa-Tapia, J.A., Whitaker, S.: Momentum jump condition at the boundary between a porous medium and a homogeneous fluid: inertial effects. J. Porous Media 1, 201–217 (1998)
    Phelan, F.R., Wise, G.: Analysis of transverse flow in aligned fibrous porous media. Composites 27A, 25 (1995)
    Philip, J.R.: Flow in porous media. Annu. Rev. Fluid. Mech. 2, 177–204 (1970)CrossRef
    Sangani, A.S., Acrivos, A.: Slow flow past periodic arrays of cylinders with application to heat transfer. Int. J. Multiph. Flow 8, 193 (1982)CrossRef
    Silva, G., Ginzburg, I.: The permeability and quality of velocity field in a square array of solid and permeable cylindrical obstacles with the TRT-LBM and FEM Brinkman-schemes. CR Mecanique 343(10–11), 545–558 (2015)CrossRef
    Spaid, M., Phelan, F.: Lattice Boltzmann method for modeling microscale flow in fibrous porous media. Phys. Fluids 9(9), 2468–74 (1997)CrossRef
    Stechkina, I.B.: Drag of porous cylinders in a viscous fluid at low Reynolds numbers. Fluid Dyn. 14(6), 912 (1979)CrossRef
    Stone, H.A.: Interfaces: in fluid mechanics and across disciplines. J. Fluid Mech. 645, 1–25 (2010)CrossRef
    Talon, L., Bauer, D., Gland, N., Youssef, S., Auradou, H., Ginzburg, I.: Assessment of the two relaxation time lattice-Boltzmann scheme to simulate Stokes flow in porous media. Water Resour. Res. 48, W04526 (2012)CrossRef
    Vafai, K.: Handbook of Porous Media. Taylor & Francis, New York (2005)CrossRef
    Vasin, S.I., Filipov, A.N.: Cell models for flows in concentrated media composed of rigid impermeable cylinders covered with a porous layer. Colloid J. 71, 141–155 (2009)CrossRef
    Vasin, A.N., Filipov, S.I., Starov, V.M.: Hydrodynamic permeability of membranes built up by particle covered by porous shells: cell models. Adv. Colloid Inteface Sci. 139, 83–96 (2008)CrossRef
    Vikhansky, A., Ginzburg, I.: Taylor dispersion in heterogeneous porous media: extended method of moments, theory, and modelling with two-relaxation-times lattice Boltzmann scheme. Phys. Fluids 26, 022104 (2014)CrossRef
    Wang, C.Y.: Darcy–Brinkman flow with solid inclusions. Chem. Eng. Comm. 197, 261–274 (2010)CrossRef
    Wang, L., Wang, L.-P., Guo, Z., Mi, J.: Volume-averaged macroscopic equation for fluid flow in moving porous media. Int. J. Heat Mass Transf. 82, 357–368 (2015)CrossRef
    Whitaker, S.: The Method of Volume Averaging, vol. Averaging. Kluwer, Dordrecht (1999)CrossRef
    Yadav, P.K., Deo, S.: Stokes flow past a porous spheroid embedded in another porous medium. Meccanica 47, 1499–1516 (2012)CrossRef
    Yadav, P.K., Filippov, A., Sherysheva, E.: Cell model of biporous medium (membrane). Colloid J. 73, 303–308 (2011)CrossRef
    Yadav, P.K., Tiwari, A., Deo, S., Yadav, M.K., Filippov, A., Vasin, S., Sherysheva, E.: Hydrodynamic permeability of biporous membrane. Colloid J. 75, 473–482 (2013)CrossRef
    Yamamoto, X.: Flow of viscous fluid at small Reynolds numbers past a porous sphere. J. Phys. Soc. Jpn. 31(5), 1572–1575 (1971)CrossRef
    Yazdchi, K., Srivastava, S., Luding, S.: Microstructural effects on the permeability of periodic fibrous porous media. Int. J. Multiph. Flow 37, 956–966 (2011)CrossRef
    Yeom, J., Agonafer, D.D., Han, J.-H., Shannon, M.A.: Low Reynolds number flow across an array of cylindrical microposts in a microchannel and figure-of-merit analysis of micropost-filled microreactors. J. Micromech. Microeng. 19, 065025 (2009)CrossRef
    Zhang, D., Kang, Q.: Pore scale simulation of solute transport in fractured porous media. Geophys. Res. Lett. 31, L12504 (2004)
    Zholkovskiy, E.K., Shilov, V.N., Masliyah, J.H., Bondarenko, M.P.: Hydrodynamic cell model: general formulation and comparative analysis of different approaches. Can. J. Chem. Eng. 85, 701–725 (2007)CrossRef
  • 作者单位:Goncalo Silva (1)
    Irina Ginzburg (1)

    1. HBAN, Irstea, Antony Regional Centre, 1 rue Pierre-Gilles de Gennes CS 10030, 92761, Antony Cedex, France
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geotechnical Engineering
    Industrial Chemistry and Chemical Engineering
    Civil Engineering
    Hydrogeology
    Mechanics, Fluids and Thermodynamics
  • 出版者:Springer Netherlands
  • ISSN:1573-1634
文摘
An analytical study is devised for the problem of bimodal porous flow across a periodic array of permeable cylindrical inclusions. Such a configuration is particularly relevant for porous media systems of dual granulometry, an idealization often taken, e.g. in the modelling of membranes and fibrous applications. The double-porosity system is governed by the Stokes–Brinkman–Darcy equations, the most general description in this class of flow problems characterized by the permeabilities of the surrounding matrix and inclusions, their porosities and the relative volume fraction. We solve this problem with the Kuwabara cell model and lubrication approach, providing analytical solutions for the system effective permeability in closed analytical form. The ensemble of results demonstrates the self-consistency of the bimodal solutions in eight possible limit configurations and supports the validity of the Beavers–Joseph interface stress jump condition for transmission from the open Stokes flow to low-permeable Darcy region. At the same time, these solutions bring further insight on the relative significance of the governing parameters on the effective permeability, with a focus on the role of the effective viscosity (porosity) distribution. Furthermore, although the cell model is restricted to relatively small volume fractions in open flow, its validity extends in less-permeable background flow inside Brinkman/Brinkman description. In turn, the lubrication approximation remains more adequate in the opposite limit of the dense impermeable inclusions. These conclusions are drawn from comparisons with the numerical solutions obtained with the developed lattice Boltzmann model and the standard finite element method. The two methods principally differ in the treatment of the interface conditions: implicit and explicit, respectively. The purpose of this task is therefore twofold. While the numerical schemes help quantifying the validity limits of the theoretical approach, the analytical solutions offer a non-trivial benchmark for numerical schemes in highly heterogeneous soil.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700