Gelation capability of cysteine-modified cyclo(L-Lys-L-Lys)s dominated by Fmoc and Trt protecting groups
详细信息    查看全文
  • 作者:Huimin Geng ; Qianying Zong ; Jie You ; Lin Ye ; Aiying Zhang…
  • 关键词:organogel ; cyclic dipeptide ; self ; assembly ; cysteine ; β ; turn
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:59
  • 期:3
  • 页码:293-302
  • 全文大小:1,601 KB
  • 参考文献:1.Hanabusa K, Suzuki M. Development of low-molecular-weight gelators and polymer-based gelators. Polym J, 2014, 46: 776–782CrossRef
    2.Buerkle LE, Rowan SJ. Supramolecular gels formed from multicomponent low molecular weight species. Chem Soc Rev, 2012, 41: 6089–6103CrossRef
    3.Adams DJ. Dipeptide and tripeptide conjugates as low-molecularweight hydrogelators. Macrom Biosci, 2011, 11: 160–173CrossRef
    4.Xie ZG, Zhang AY, Ye L, Feng ZG. Organo- and hydrogels derived from cyclo(L-Tyr-L-Lys) and its e-amino derivatives. Soft Matter, 2009, 5: 1747–1482CrossRef
    5.Kar T, Debnath S, Das D, Shome A, Das PK. Organogelation and hydrogelation of low-molecular-weight amphiphilic dipeptides: pH responsiveness in phase-selective gelation and dye removal. Langmuir, 2009, 25: 8639–8648CrossRef
    6.Dasgupta A, Mondal JH, Das D. Peptide hydrogels. RSC Adv, 2013, 3: 9117–9149CrossRef
    7.Zhang SG, Marini DM, Hwang W, Santoso S. Design of nano-structured biological materials through self-assembly of peptides and proteins. Curr Opin Chem Biol, 2002, 6: 865–871CrossRef
    8.Koutsopoulos S, Unsworth LD, Nagai Y, Zhang SG. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Proc Natl Acad Sci USA, 2009, 106: 4623–4628CrossRef
    9.Zhang YL, Yang B, Xu LX, Zhang XY, Tao L, Wei Y. Self-healing hydrogels based on dynamic chemistry and their biomedical applications. Acta Chim Sinica, 2013, 71: 485–492CrossRef
    10.Chen J, Wu W, Mc Neil AJ. Detecting a peroxide-based explosive via molecular gelation. Chem Commun, 2012, 48: 7310–7312CrossRef
    11.Frederix PW, Scott GG, Abul-Haija YM, Kalafatovic D, Pappas CG, Javid N, Hunt NT, Ulijn RV, Tuttle T. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nat Chem, 2015, 7: 30–37CrossRef
    12.Gazit E. Molecular self-assembly: searching sequence space. Nat Chem, 2015, 7: 14–15CrossRef
    13.Cheng G, Castelletto V, Moulton CM, Newby GE, Hamley IW. Hydrogelation and self-assembly of Fmoc-tripeptides: unexpected influence of sequence on self-assembled fibril structure, and hydrogel modulus and anisotropy. Langmuir, 2010, 26: 4990–4998CrossRef
    14.Manchineella S, Govindaraju T. Hydrogen bond directed self-assembly of cyclic dipeptide derivatives: gelation and ordered hierarchical architectures. RSC Adv, 2012, 2: 5539–5542CrossRef
    15.Mash EA. Crystal engineering with 1,4-piperazine-2,5-diones. Cryst Eng Comm, 2014, 16: 8620–8637CrossRef
    16.Borthwick AD. 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem Rev, 2012, 112: 3641–3716CrossRef
    17.Hanabusa K, Matsumoto M, Kimura M, Kakehi A, Shirai H. Low molecular weight gelators for organic fluids: gelation using a family of cyclo(dipeptide)s. J Colloid Interf Sci, 2000, 224: 231–244CrossRef
    18.Delatouche R, Durini M, Civera M, Belvisi L, Piarulli U. Foldamers of bifunctional diketopiperazines displaying a ß-bend ribbon structure. Tetrahedron Lett, 2010, 51: 4278–4280CrossRef
    19.Hoshizawa H, Minemura Y, Yoshikawa K, Suzuki M, Hanabusa K. Thixotropic hydrogelators based on a cyclo(dipeptide) derivative. Langmuir, 2013, 29: 14666–14673CrossRef
    20.Sasaki Y, Akustu Y, Matsui M, Suzuki K, Sakurada S, Sato T, Kisara K. Studies on analgesic olgopeptides. II. Structure-activity relationship among thirty analogs of a cyclic dipeptide, cyclo(Tyr-Arg). Chem Pharm Bull, 1982, 30: 4435–4442CrossRef
    21.Xie ZG, Zhang AY, Ye L, Wang X, Feng ZG. Shear-assisted hydrogels based on self-assembly of cyclic dipeptide derivatives. J Mater Chem, 2009, 19: 6100–6102CrossRef
    22.a)_Majó MA, Bou JJ, Herranz C, Muñoz-Guerra S. Polycondensation of L-lysine diketopiperazine with tartaric acid—evidence on the formation of cyclic oligomers. Macromol Chem Phys, 2006, 207: 615–620CrossRef
    b).Zong QY, Geng HM, Zhang AY, Ye L, Wang X, Feng ZG. A study on synthesis and gelation capability of Fmoc and Boc disubstituted cyclo(L-Lys-L-Lys)s. Acta Chim Sinica, 2015, 73: 423–430CrossRef
    23.a)_Kaur N, Zhou B, Breitbeil F, Hardy K, Kraft KS, Trantcheva I, Phanstiel O IV. A delineation of diketopiperazine self-assembly processes understanding the molecular events involved in N-(Fumaroyl)- dike-topiperazine of L-lys (FDKP) Interactions. Mol Pharm, 2007, 5: 294–315
    b).Geng HM, Zong QY, Zhang AY, Ye L, Wang X, Feng ZG. Synthesis of cyclo(L-Lys-L-Lys)-based organogelators and their applications for phase-selective gelation and dye adsorption. Chin J Appl Chem, 2015, doi: 10.11944/j.issn.1000-0518.2015.08.140423
    24.Fleming S, Ulijn RV. Design of nanostructures based on aromatic peptide amphiphiles. Chem Soc Rev, 2014, 43: 8150–8177CrossRef
    25.Yang ZM, Gu HW, Fu DG, Gao P, Lam GK, Xu B. Enzymatic formation of supramolecular hydrogels. Adv Mater, 2004, 16: 1440–1444CrossRef
    26.Shao H, Parquette JR. A π-conjugated hydrogel based on an Fmocdipeptide naphthalene diimide semiconductor. Chem Commun, 2010, 46: 4285–4287CrossRef
    27.Smith AM, Williams RJ, Tang C, Coppo P, Collins RF, Turner ML, Saiani A, Ulijn RV. Fmoc-diphenylalanine self aßsembles to a hydrogel via a novel architecture based π-π interlocked ß-sheets. Adv Mater, 2008, 20: 37–41CrossRef
    28.Nguyen MM, Eckes KM, Suggs LJ. Charge and sequence effects on the self-assembly and subsequent hydrogelation of Fmoc-depsipeptides. Soft Matter, 2014, 10: 2693–2702CrossRef
    29.Xie ZG, Zhang AY, Ye L, Feng ZG. Synthesis and gelation of a series of low-molecular-weight gelators based on fmoc-dipeptide in alcoholic solvents. Acta Chim Sinica, 2008, 23: 2620–2624
    30.Dou X, Li P, Zhang D, Feng CL. C2-symmetric benzene-based hydrogels with unique layered structures for controllable organic dye adsorption. Soft Matter, 2012, 8: 3231–3238CrossRef
    31.Tang C, Ulijn RV, Saiani A. Effect of glycine substitution on Fmoc–diphenylalanine self-assembly and gelation properties. Langmuir, 2011, 27: 14438–14449CrossRef
    32.a)_Xu XD, Chen CS, Lu B, Cheng SX, Zhang XZ, Zhuo RX. Coassembly of oppositely charged short peptides into well-defined supramolecular hydrogels. J Phys Chem B, 2010, 114: 2365–2372
    b).Schweitzer D, Hausser KH, Haenel MW. Transanular interaction in [2.2] phanes; [2.2] (4,4′) diphenylophane and [2.2] (2,7) fluorenophane. Chem Phys, 1978, 29: 181–185CrossRef
    33.a)_Wang HM, Yang CH, Tan M, Wang L, Kong DL, Yang ZM. A structure-gelation ability study in a short peptide-based “Super Hydrogelator” system. Soft Matter, 2011, 7: 3897–3905CrossRef
    b).Gosal WS, Clark AH, Pudney PDA, Ross-Murphy SB. Novel amyloid fibrillar networks derived from a globular protein: beta-lactoglobulin. Langmuir, 2002, 18: 7174–7781CrossRef
    c).Gosal WS, Clark AH, Pudney PDA, Ross-Murphy SB. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure. Biomacromolecules, 2004, 5: 2408–2419CrossRef
    34.Zhu P, Yan X, Su Y, Yang Y, Li J. Solvent-induced structural transition of self-assembled dipeptide: from organogels to microcrystals. Chem Eur J, 2010, 16: 3176–3183CrossRef
    35.a)_Nalluri SK, Shivarova N, Kanibolotsky AL, Zelzer M, Gupta S, Frederix PW, Skabara PJ, Gleskova H, Ulijn RV. Conducting nanofibers and organogels derived from the self-assembly of tetrathiafulvalene- appended dipeptides. Langmuir, 2014, 30: 12429–12437CrossRef
    b).Tang C, Smith AM, Collins RF. Fmoc-diphenylalanine self-assembly mechanism induces apparent pKa shifts. Langmuir, 2009, 25: 9447–9453CrossRef
    36.Dave N, Troullier A, Mus-Veteau I, Dunach M, Leblanc G, Padros E. Secondary structure components and properties of the melibiose permease from escherichia coli: a fourier transform infrared spectroscopy analysis. Biophys J, 2008, 78: 747–755
    37.Koch O. Advances in the prediction of turn structures in peptides and proteins. Mol Inf, 2012, 31: 624–630CrossRef
    38.Gunasekaran K, Gomathi L, Ramakrishnan C, Chandrasekhar J, Balaram P. Conformational interconversions in peptide ß-turns: analysis of turns in proteins and computationnal estimates of barriers. J Mol Biol, 1998, 284: 1505–1516CrossRef
    39.Tena-Solsona M, Miravet JF, Escuder B. Tetrapeptidic molecular hydrogels: self-aßsembly and co-aggregation with amyloid fragment Aß1-40. Chem Eur J, 2014, 20: 1023–1031CrossRef
    40.John G, Masuda M, Yoshida K, Shinkai S, Shimizu T. Self-assembly of a sugar-based gelator in water: its remarkable diversity in gelation ability and aggregate structure. Langmuir, 2001, 17: 7229–7232CrossRef
  • 作者单位:Huimin Geng (1)
    Qianying Zong (1)
    Jie You (1)
    Lin Ye (1)
    Aiying Zhang (1)
    Ziqiang Shao (1)
    Zengguo Feng (1)

    1. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Chinese Library of Science
    Chemistry
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1870
文摘
A series of symmetrical peptidomimetics (3–8) based on cysteine-modified cyclo(L-Lys-L-Lys)s were synthesized, and their gelation capability in organic solvents was dominated by fluorenylmethyloxycarbonyl (Fmoc) and triphenylmethyl (Trt) protecting groups and the exchange of thiol-to-disulfide as well. The peptidomimetics holding Trt (3 and 4) showed no gel performance, while the Fmoc groups promoted 5 and 6 to give rise to thermo-reversible organogels in a number of organic solvents. The self-assembled fibrillar networks were distinctly evidenced in the organogels by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) observations. Fourier transform infrared spectroscopy (FT-IR) and fluorescence analyses revealed that the hydrogen bonding and π-π stacking play as major driving forces for the self-assembly of these organogelators. A β-turn secondary structure was deduced for the organogel of 6 by virtue of X-ray diffraction, FT-IR and circular dichroism (CD) measurements, and an interdigitated bilayer structure was also presented.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700