Involvement of sulfates from cruzipain, a major antigen of Trypanosoma cruzi, in the interaction with immunomodulatory molecule Siglec-E
详细信息    查看全文
  • 作者:Maximiliano R. Ferrero ; Anja M. Heins…
  • 关键词:Trypanosoma cruzi ; Siglecs ; Cruzipain ; Sialic acid ; Sulfates ; Immunomodulation
  • 刊名:Medical Microbiology and Immunology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:205
  • 期:1
  • 页码:21-35
  • 全文大小:2,449 KB
  • 参考文献:1.WHO (2010) Available at: http://www.​who.​int/​mediacentre/​factsheets/​fs340/​en/​index.​html
    2.Gascon J, Bern C, Pinazo MJ (2010) Chagas disease in Spain, the United States and other non-endemic countries. ActaTrop 115:22–27 Review
    3.Pérez-Molina JA, Norman F, López-Vélez R (2012) Chagas disease in non-endemic countries: epi-demiology, clinical presentation and treatment. Curr Infect Dis Rep 14:263–274CrossRef PubMed
    4.Scharfstein J, Rodriguez MM, Alves CA, de Souza W, Previato JO, Mendonca-Previato L (1983) Trypanosoma cruzi: description of a highly purified surface antigen defined by human antibodies. J Immunol 131(2):972–976PubMed
    5.Scharfstein J, Luquetti A, Murta AC, Senna M, Rezende JM, Rassi A, Mendonça-Previato L (1985) Chagas’ disease: serodiagnosis with purified Gp25 antigen. Am J Trop Med Hyg 34(6):1153–1160PubMed
    6.Martinez J, Campetella O, Frasch ACC, Cazzulo JJ (1991) The major cysteine proteinase (cruzipain) from is antigenic in human infections. Infect Immun 59(11):4275–4277PubMedCentral PubMed
    7.Martinez J, Campetella O, Frasch ACC, Cazzulo JJ (1993) The reactivity of sera from chagasic patients against different fragments of cruzipain, the major cysteine proteinase from Trypanosoma cruzi, suggests the presence of defined antigenic and catalytic domains. Immunol Lett 35:191–196CrossRef PubMed
    8.Cazzulo JJ, Labriola C, Parussini F, Duschak VG, Martinez J, Franke de Cazzulo BM (1995) Cysteine proteinases in Trypanosoma cruzi and other Trypanosomatid parasites. Acta Chim Slov 42:409–418
    9.Cazzulo JJ, Hellman U, Couso R, Parodi AJA (1990) Amino acid and carbohydrate composition of a lysosomal cysteine proteinase from Trypanosoma cruzi. Absence of phosphorylated mannose residues. Mol Biochem Parasitol 38:41–48CrossRef PubMed
    10.Parodi AJA, Labriola C, Cazzulo JJ (1995) The presence of complex-type oligosaccharides at the C-terminal domain glycosylation site of some molecules of cruzipain. Mol Biochem Parasitol 69:247–255CrossRef PubMed
    11.Barboza M, Duschak VG, Fukuyama Y, Nonami H, Erra-Balsells R, Cazzulo JJ, Couto AS (2005) Structural analysis of the N-glycans of the major cysteine proteinase of Trypanosoma cruzi. Identification of sulfated high-mannose type oligosaccharides. FEBS J 272:3803–3815CrossRef PubMed
    12.Scharfstein J, Schmitz V, Morandi V, Capella MM, Lima AP, Morrot A, Juliano L, Müller-Esterl W (2000) Host cell invasion by Trypanosoma cruzi is potentiated by activation of bradykinin B(2) receptors. J Exp Med 6(192):1289–1300CrossRef
    13.Benítez-Hernández I, Méndez-Enríquez E, Ostoa P, Fortoul T, Ramírez JA, Stempin C, Cerbán F, Soldevila G, García-Zepeda EA (2010) Proteolytic cleavage of chemokines by Trypanosoma cruzi’s cruzipain inhibits chemokine functions by promoting the generation of antagonists. Immunobiology 215:413–426CrossRef PubMed
    14.Doyle PS, Zhou YM, Hsieh I, Greenbaum DC, McKerrow JH, Engel JC (2011) The Trypanosoma cruzi protease cruzain mediates immune evasion. PLoS Pathog 7(9):1–11
    15.Duschak VG, Couto AS (2009) Cruzipain, the major cysteine protease of Trypanosoma cruzi: a sulfated glycoprotein antigen as relevant candidate for vaccine development and drug target. Curr Med Chem 16:3174–3202 Review CrossRef PubMed
    16.Cazorla SI, Frank FM, Malchiodi EL (2009) Vaccination approaches against Trypanosoma cruzi infection. Expert Rev Vaccines 8:921–935 Review CrossRef PubMed
    17.Cazzulo JJ, Stoka V, Turk V (2001) Cruzipain, the major cysteine proteinase from the protozoan parasite Trypanosoma cruzi. Curr Pharm Des 7:1143–1156CrossRef
    18.Duschak VG (2011) A decade of targets and patented drugs for chemotherapy of chagas disease. Recent Pat Antiinfect Drug Discov 6:216–259CrossRef PubMed
    19.Barboza M, Duschak VG, Cazzulo JJ, Lederkremer RM, Couto AS (2003) Presence of sialic acid in N-linked oligosaccharide chains and O-linked N-acetylglucosamine in cruzipain, the major cysteine proteinase of Trypanosoma cruzi. Mol Biochem Parasitol 126:293–296CrossRef PubMed
    20.Acosta DM, Arnaiz MR, Esteva MI, Barboza M, Stivale D, Orlando UD, Torres S, Laucella SA, Couto AS, Duschak VG (2008) Sulfates are main targets of immune responses to cruzipain and are involved in heart damage in BALB/c immunized mice. Int Immunol 20:461–470CrossRef PubMed
    21.Acosta DM, Soprano LL, Ferrero MR, Esteva MI, Riarte AR, Couto AS, Duschak VG (2012) Structural and immunological characterization of sulfatides: relevance of sulfate moieties in Trypanosoma cruzi glycoconjugates. Parasite Immunol 34:499–510CrossRef PubMed
    22.Crocker PR, Paulson JC, Varki A (2007) Siglecs and their roles in the immune system. Nat Rev Immunol 7:255–266 Review CrossRef PubMed
    23.Erdmann H, Steeg C, Koch-Nolte F, Fleischer B, Jacobs T (2009) Sialylated ligands on pathogenic Trypanosoma cruzi interact with Siglec-E (sialic acid-binding Ig-like lectin-E). Cell Microbiol 11:1600–1611CrossRef PubMed
    24.Crocker PR (2005) Siglec in innate immunity. Curr Opin Pharmacol 5:431–437 Review CrossRef PubMed
    25.Varki A, Angata T (2006) Siglecs, the major subfamily of type-1 lectins. Glycobiology 16(1):1–27 Review CrossRef
    26.Jacobs T, Erdmann H, Fleischer B (2010) Molecular interaction of Siglecs (sialic acid-binding Ig-like lectins) with sialylated ligands on Trypanosoma cruzi. Eur J Cell Biol 89:113–116CrossRef PubMed
    27.Rapoport EM, Pazynina GV, Sablina MA, Crocker PR, Bovin NV (2006) Probing sialic acid binding Ig-like lectins (siglecs) with sulfated oligosaccharides. Biochemistry (Mosc) 71:496–504CrossRef
    28.Cazzulo JJ, Franke de Cazzulo BM, Engel JC, Cannata JJ (1985) End products and enzymes levels of aerobic glucose fermentation in Trypanosomatids. Mol Biochem Parasitol 16:329–343CrossRef PubMed
    29.Andrews NW, Colli W (1982) Adhesion and interiorization of Trypanosoma cruzi in mammalian cells. J Protozool 29:264–269CrossRef PubMed
    30.Ey PL, Prowse SJ, Jenkin CR (1978) Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-Sepharose. Immunochemistry 15:429–436CrossRef PubMed
    31.Acosta DM, Soprano LL, Ferrero M, Landoni M, Esteva MI, Couto AS, Duschak VG (2011) A striking common O-linked N-acetylglucosaminyl moiety between cruzipain and myosin. Parasite Immunol 33:363–370CrossRef PubMed
    32.Freeze HH, Yeh R, Miller AL, Kornfeld S (1983) Structural analysis of the asparagine-linked oligosaccharides from three lysosomal enzymes of Dictyostelium discoideum. Evidence for an unusual acid-stable phosphodiester. J Biol Chem 258(24):14874–14879PubMed
    33.Parussini F, Duschak VG, Cazzulo JJ (1998) Membrane-bound cysteine proteinase isoforms in different developmental stages of Trypanosoma cruzi. Cell Mol Biol 44:513–519PubMed
    34.Duschak VG, Barboza M, Garcia GA, Lammel EM, Couto AS, Isola EL (2006) Novel cysteine proteinase in Trypanosoma cruzi metacyclogenesis. Parasitology 132:345–355CrossRef PubMed
    35.Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685CrossRef PubMed
    36.Oakley BR, Kirsch DR, Morris R (1980) A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem 105:361–363CrossRef
    37.Duschak VG, Ciaccio M, Nasser JR, Basombrio MA (2001) Enzymatic activity, protein expression and gene sequence of cruzipain in virulent and attenuated Trypanosoma cruzi strains. J Parasitol 87:1016–1022CrossRef PubMed
    38.Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275PubMed
    39.Bradford J (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248CrossRef PubMed
    40.Towbin H, Staehlin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets. Procedures and some application. Proc Natl Acad Sci USA 76:4350–4354PubMedCentral CrossRef PubMed
    41.Ferrero MR, Soprano LL, Acosta DM, García GA, Esteva MI, Couto AS, Duschak VG (2014) Effects of chlorate on the sulfation process of Trypanosoma cruzi glycoconjugates. Implication of parasite sulfates in cellular invasion. Acta Trop 137:161–173CrossRef PubMed
    42.Duschak VG, Cazzulo JJ (1991) Subcellular localization of glutamate dehydrogenases and alanine aminotransferase in epimastigotes of Trypanosoma cruzi. FEMS Microbiol Lett 83:131–136
    43.Klaassen CD, Boles JW (1997) Sulfation and sulfotransferases 5: the importance of 3′-phosphoadenosine 5′-phosphosulfate (PAPS) in the regulation of sulfation. FASEB J 11(6):404–418PubMed
    44.Baeuerle PA, Huttner WB (1986) Chlorate. A potent inhibitor of protein sulfation in intact cells. Biochem Biophys Res Commun 141(2):870–877CrossRef PubMed
    45.Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM (1991) Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64:841–848CrossRef PubMed
    46.Shukla D, Liu J, Blaiklock P, Shworak NW, Bai X, Esko JD, Cohen GH, Eisenberg RJ, Rosenberg RD, Spear PG (1999) A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99:13–22CrossRef PubMed
    47.Fukuda M, Hiraoka N, Akama TO, Fukuda MN (2001) Carbohydrate-modifying sulfotransferases: structure, function, and pathophysiology. J Biol Chem 276:47747–47750CrossRef PubMed
    48.Vermelho AB, de Meirelles MDN, Pereira MC, Pohlentz G, Barreto-Bergter E (1997) Heart muscle cells share common neutral glycosphingolipids with Trypanosoma cruzi. Acta Trop 64:131–143CrossRef PubMed
    49.Petry K, Nudelman E, Eisen H, Hakomori S (1988) Sulfated lipids represent common antigens on the surface of Trypanosoma cruzi and mammalian tissues. Mol Biochem Parasitol 30:113–121CrossRef PubMed
    50.Uhrig ML, Couto AS, Zingales B, Colli W, Lederkremer RM (1992) Metabolic labelling and partial characterisation of a sulfoglycolipid in Trypanosoma cruzi trypomastigotes. Carbohydr Res 231:329–334CrossRef PubMed
    51.Bernstein HB, Compans RW (1992) Sulfation of the human immunodeficiency virus envelope glycoprotein. J Virol 66:6953–6959PubMedCentral PubMed
    52.Van Rooijen JJ, Kamerling JP, Vliegenthart JF (1998) Sulfated di-, tri- and tetraantennary N-glycans in human Tamm-Horsfall glycoprotein. Eur J Biochem 256:471–487CrossRef PubMed
    53.Kawasaki N, Ohta M, Hyuga S, Hashimoto O, Hayakawa T (2000) Application of liquid chromatography/mass spectrometry and liquid chromatography with tandem mass spectrometry to the analysis of the site specific carbohydrate heterogeneity in erythropoietin. Anal Biochem 285:82–91CrossRef PubMed
    54.Honke K, Taniguchi N (2002) Sulfotransferases and sulfated oligosaccharides. Med Res Rev 22:637–654CrossRef PubMed
    55.Stoka V, Nycander M, Lenarcic B, Labriola C, Cazzulo JJ, Bjork I, Turk V (1995) Inhibition of cruzipain, the major cysteine proteinase of the protozoan parasite, Trypanosoma cruzi, by proteinase inhibitors of the cystatin superfamily. FEBS Lett 370:101–104CrossRef PubMed
    56.Martínez J, Henriksson J, Ridåker M, Pettersson U, Cazzulo JJ (1998) Polymorphisms of the genes encoding cruzipain, the major cysteine proteinase of Trypanosoma cruzi, in the region encoding the C-terminal domain. FEMS Microbiol Lett 159:35–39CrossRef PubMed
    57.Cazzulo JJ, Martinez JA, Parodi AJA, Wernstedt CH, Hellman U (1992) On the post-translational modifications at the C-terminal domain of the major cysteine proteinase (cruzipain) from T. cruzi. FEMS Microbiol Lett 100:411–416CrossRef PubMed
    58.Freeze HH, Mierendorf RC, Wunderlich R, Dimond RL (1984) Sulfated oligosaccharides block antibodies to Dictyostelium discoideun acid hydrolases. J Biol Chem 259(16):10641–10643PubMed
    59.Couto AS, Soprano LL, Landoni M, Pourcelot M, Bultel L, Parente J, Ferrero M, Barbier M, Dussouy C, Esteva M, Kovensky J, Duschak VG (2012) Anionic synthetic sugars mimic the sulfated cruzipain epitope. Central role of 6-SO3-NAcGlc for immune recognition. FEBS J 279(19):3665–3679CrossRef PubMed
    60.Campetella O, Henriksson J, Aslund L, Frasch ACC, Pettersson U, Cazzulo JJ (1992) The major cysteine proteinase (cruzipain) from Trypanosoma cruzi is encoded by multiple polymorphic tandemly organized genes located on different chromosomes. Mol Biochem Parasitol 50:225–234CrossRef PubMed
    61.McMillan SJ, Sharma RS, McKenzie EJ, Richards HE, Zhang J, Prescott A, Crocker PR (2013) Siglec-E is a negative regulator of acute pulmonary neutrophil inflammation and suppresses CD11b β2-integrin-dependent signaling. Blood 121(11):2084–2094PubMedCentral CrossRef PubMed
    62.Campanero-Rhodes MA, Childs RA, Kiso M, Komba S, Le Narvor C, Warren J, Otto D, Crocker PR, Feizi T (2006) Carbohydrate microarrays reveal sulphation as a modulator of siglec binding. Biochem Biophys Res Commun 344(4):1141–1146CrossRef PubMed
    63.Redelinghuys P, Antonopoulos A, Liu Y, Campanero-Rhodes MA, McKenzie E, Haslam SM, Dell A, Feizi T, Crocker PR (2011) Early murine T-lymphocyte activation is accompanied by a switch from N-Glycolyl- to N-acetyl-neuraminic acid and generation of ligands for siglec-E. J Biol Chem 286(40):34522–34532PubMedCentral CrossRef PubMed
  • 作者单位:Maximiliano R. Ferrero (1)
    Anja M. Heins (2)
    Luciana L. Soprano (1)
    Diana M. Acosta (1)
    Mónica I. Esteva (1)
    Thomas Jacobs (2)
    Vilma G. Duschak (1)

    1. Área de Bioquímica de Proteínas y Glicobiología de Parásitos, Departamento de Investigación, Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, ANLIS-Malbrán, Ministerio de Salud de la Nación, Av. Paseo Colón 568 (1063), Buenos Aires, Argentina
    2. Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Medical Microbiology
    Immunology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1831
文摘
In order to investigate the involvement of sulfated groups in the Trypanosoma cruzi host–parasite relationship, we studied the interaction between the major cysteine proteinase of T. cruzi, cruzipain (Cz), a sulfate-containing sialylated molecule and the sialic acid-binding immunoglobulin like lectin-E (Siglec-E). To this aim, ELISA, indirect immunofluorescence assays and flow cytometry, using mouse Siglec-E–Fc fusion molecules and glycoproteins of parasites, were performed. Competition assays verified that the lectins, Maackia amurensis II (Mal II) and Siglec-E–Fc, compete for the same binding sites. Taking into account that Mal II binding remains unaltered by sulfation, we established this lectin as sialylation degree control. Proteins of an enriched microsomal fraction showed the highest binding to Siglec-E as compared with those from the other parasite subcellular fractions. ELISA assays and the affinity purification of Cz by a Siglec-E column confirmed the interaction between both molecules. The significant decrease in binding of Siglec-E–Fc to Cz and to its C-terminal domain (C-T) after desulfation of these molecules suggests that sulfates contribute to the interaction between Siglec-E–Fc and these glycoproteins. Competitive ELISA assays confirmed the involvement of sulfated epitopes in the affinity between Siglec-E and Cz, probably modified by natural protein environment. Interestingly, data from flow cytometry of untreated and chlorate-treated parasites suggested that sulfates are not primary receptors, but enhance the binding of Siglec-E to trypomastigotic forms. Altogether, our findings support the notion that sulfate-containing sialylated glycoproteins interact with Siglec-E, an ortholog protein of human Siglec-9, and might modulate the immune response of the host, favoring parasitemia and persistence of the parasite. Keywords Trypanosoma cruzi Siglecs Cruzipain Sialic acid Sulfates Immunomodulation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700