Dissection of the Candida albicans Cdc4 protein reveals the involvement of domains in morphogenesis and cell flocculation
详细信息    查看全文
  • 作者:Chuen Chin (1)
    Wei-Chung Lai (2)
    Tai-Lin Lee (3)
    Tzu-Ling Tseng (2)
    Jia-Ching Shieh (2) (4)
  • 关键词:Candida albicans ; CDC4 domains ; Morphogenesis ; Flocculation
  • 刊名:Journal of Biomedical Science
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:20
  • 期:1
  • 全文大小:679 KB
  • 参考文献:1. Whiteway M, Bachewich C: Morphogenesis in Candida albicans (*). / Annu Rev Microbiol 2007, 61:529-53. CrossRef
    2. Biswas S, Van Dijck P, Datta A: Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. / Microbiol Mol Biol Rev 2007, 71:348-76. CrossRef
    3. Liu H: Transcriptional control of dimorphism in Candida albicans. / Curr Opin Microbiol 2001, 4:728-35. CrossRef
    4. Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR: Nonfilamentous C. albicans mutants are avirulent. / Cell 1997, 90:939-49. CrossRef
    5. Berman J: Morphogenesis and cell cycle progression in Candida albicans. / Curr Opin Microbiol 2006, 9:595-01. CrossRef
    6. Atir-Lande A, Gildor T, Kornitzer D: Role for the SCFCDC4 ubiquitin ligase in Candida albicans morphogenesis. / Mol Biol Cell 2005, 16:2772-785. CrossRef
    7. Shieh JC, White A, Cheng YC, Rosamond J: Identification and functional characterization of Candida albicans CDC4. / J Biomed Sci 2005,12(6):913-24. CrossRef
    8. Hochstrasser M: Protein degradation or regulation: Ub the judge. / Cell 1996, 84:813-15. CrossRef
    9. Willems AR, Goh T, Taylor L, Chernushevich I, Shevchenko A, Tyers M: SCF ubiquitin protein ligases and phosphorylation-dependent proteolysis. / Philos Trans R Soc Lond B Biol Sci 1999, 354:1533-550. CrossRef
    10. Feldman RM, Correll CC, Kaplan KB, Deshaies RJ: A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. / Cell 1997, 91:221-30. CrossRef
    11. Henchoz S, Chi Y, Catarin B, Herskowitz I, Deshaies RJ, Peter M: Phosphorylation- and ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor Far1p in budding yeast. / Genes Dev 1997, 11:3046-060. CrossRef
    12. Tseng TL, Lai WC, Jian T, Li C, Sun HF, Way TD, Shieh JC: Affinity purification of Candida albicans CaCdc4-associated proteins reveals the presence of novel proteins involved in morphogenesis. / Biochem Biophys Res Commun 2010, 395:152-57. CrossRef
    13. Miller J: / Experiments in Molecular Genetics. New York: Cold Spring Harbor Laboratory Press, Cold Spring Harbor; 1972.
    14. Wilson RB, Davis D, Mitchell AP: Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. / J Bacteriol 1999, 181:1868-874.
    15. Sherman F, Fink GR, Hick J: / Methods in Yeast Genetics. New York: Cold Spring Harbor Laboratory Press, Cold Spring Harbor; 1986.
    16. Care RS, Trevethick J, Binley KM, Sudbery PE: The MET3 promoter: a new tool for Candida albicans molecular genetics. / Mol Microbiol 1999, 34:792-98. CrossRef
    17. Walther A, Wendland J: An improved transformation protocol for the human fungal pathogen Candida albicans. / Curr Genet 2003, 42:339-43. CrossRef
    18. Lai WC, Tseng TL, Jian T, Lee TL, Cheng CW, Shieh JC: Construction of Candida albicans Tet-on tagging vectors with a Ura-blaster cassette. / Yeast 2011,28(3):253-63. CrossRef
    19. Park YN, Morschhauser J: Tetracycline-inducible gene expression and gene deletion in Candida albicans. / Eukaryot Cell 2005, 4:1328-342. CrossRef
    20. Shieh JC, Cheng YC, Su MC, Moore M, Choo Y, Klug A: Tailor-made zinc-finger transcription factors activate FLO11 gene expression with phenotypic consequences in the yeast Saccharomyces cerevisiae. / PLoS ONE 2007, 2:e746. CrossRef
    21. Verstrepen KJ, Klis FM: Flocculation, adhesion and biofilm formation in yeasts. / Mol Microbiol 2006, 60:5-5. CrossRef
    22. Fu Y, Ibrahim AS, Sheppard DC, Chen YC, French SW, Cutler JE, Filler SG, Edwards JE Jr: Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. / Mol Microbiol 2002, 44:61-2. CrossRef
    23. Bayly JC, Douglas LM, Pretorius IS, Bauer FF, Dranginis AM: Characteristics of Flo11-dependent flocculation in Saccharomyces cerevisiae. / FEMS Yeast Res 2005, 5:1151-156. CrossRef
    24. Wilson RB, Davis D, Enloe BM, Mitchell AP: A recyclable Candida albicans URA3 cassette for PCR product-directed gene disruptions. / Yeast 2000, 16:65-0. CrossRef
    25. Kirsch DR, Whitney RR: Pathogenicity of Candida albicans auxotrophic mutants in experimental infections. / Infect Immun 1991, 59:3297-300.
    26. Bain JM, Stubberfield C, Gow NA: Ura-status-dependent adhesion of Candida albicans mutants. / FEMS Microbiol Lett 2001, 204:323-28. CrossRef
    27. Mukherjee PK, Mohamed S, Chandra J, Kuhn D, Liu S, Antar OS, Munyon R, Mitchell AP, Andes D, Chance MR, / et al.: Alcohol dehydrogenase restricts the ability of the pathogen Candida albicans to form a biofilm on catheter surfaces through an ethanol-based mechanism. / Infect Immun 2006, 74:3804-816. CrossRef
    28. Finkel JS, Mitchell AP: Genetic control of Candida albicans biofilm development. / Nat Rev Microbiol 2011, 9:109-18. CrossRef
  • 作者单位:Chuen Chin (1)
    Wei-Chung Lai (2)
    Tai-Lin Lee (3)
    Tzu-Ling Tseng (2)
    Jia-Ching Shieh (2) (4)

    1. Division of Infectious Disease, Department of Internal Medicine, Antai Medical Care Cooperation Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan
    2. Department of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Road, Taichung City, 40201, Taiwan
    3. Department of Molecular Biotechnology, Da-Yeh University, Changhua County, Taiwan
    4. Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, Taiwan
  • ISSN:1423-0127
文摘
Background CDC4, which encodes an F-box protein that is a member of the Skp1-Cdc53/Cul1-F-box (SCF) ubiquitin E3 ligase, was initially identified in the budding yeast Saccharomyces cerevisiae as an essential gene for progression through G1-S transition of the cell cycle. Although Candida albicans CDC4 (CaCDC4) can release the mitotic defect caused by the loss of CDC4 in S. cerevisiae, CaCDC4 is nonessential and suppresses filamentation. Results To further elucidate the function of CaCDC4, a C. albicans strain, with one CaCDC4 allele deleted and the other under the repressible C. albicans MET3 promoter (CaMET3p) control, was made before introducing cassettes capable of doxycycline (Dox)-induced expression of various C. albicans Cdc4 (CaCdc4) domains. Cells from each strain could express a specific CaCdc4 domain under Dox-induced, but CaMET3-CaCDC4 repressed conditions. Cells expressing domains without either the F-box or WD40-repeat exhibited filamentation and flocculation similarly to those lacking CaCDC4 expression, indicating the functional essentiality of the F-box and WD40-repeat. Notably, cells expressing the N-terminal 85-amino acid truncated CaCdc4 partially reverse the filament-to-yeast and weaken the ability to flocculate compared to those expressing the full-length CaCdc4, suggesting that N-terminal 85-amino acid of CaCdc4 regulates both morphogenesis and flocculation. Conclusions The F-box and the WD40-repeat of CaCdc4 are essential in inhibiting yeast-to-filament transition and flocculation. The N-terminal region (1-5) of CaCdc4 also has a positive role for its function, lost of which impairs both the ability to flocculate and to reverse filamentous growth in C. albicans.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700