Geometrical focusing as a mechanism for significant amplification of ground motion in sedimentary basins: analytical and numerical study
详细信息    查看全文
  • 作者:Shahar Shani-Kadmiel (1)
    Michael Tsesarsky (2)
    John N. Louie (3)
    Zohar Gvirtzman (4)
  • 关键词:Ground motion amplification ; Geometrical focusing ; Seismic wave propagation ; Site response ; Sedimentary basin response ; Alluvial valley response
  • 刊名:Bulletin of Earthquake Engineering
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:12
  • 期:2
  • 页码:607-625
  • 全文大小:2,150 KB
  • 参考文献:1. Adams BM, Osborne NM, Taber JJ (2003) The basin-edge effect from weak ground motions across the fault-bounded edge of the Lower Hutt Valley, New Zealand. Bull Seismol Soc Am 93(6):2703-716 CrossRef
    2. Aki K, Larner KL (1970) Surface motion of a layered medium having an irregular interface due to incident plane SH waves. J Geophys Res 75(5):933-54 CrossRef
    3. Alex CM, Olsen KB (1998) Lens-effect in Santa Monica? Geophys Res Lett 25(18):3441-444 CrossRef
    4. Bard PY, Bouchon M (1980) The seismic response of sediment-filled valleys. Part 1. The case of incident SH waves. Bull Seismol Soc Am 70(4):1263-286
    5. Bard PY, Bouchon M (1980) The seismic response of sediment-filled valleys. Part 2. The case of incident P and SV waves. Bull Seismol Soc Am 70(5):1921-941
    6. Brocher T (2008) Key elements of regional seismic velocity models for long period ground motion simulations. J Seismol 12(2):217-21. doi:10.1007/s10950-007-9061-3 CrossRef
    7. Davis PM, Rubinstein JL, Liu KH, Gao SS, Knopoff L (2000) Northridge earthquake damage caused by geologic focusing of seismic waves. Science 289(5485):1746-750 CrossRef
    8. Dravinski M, Ding G, Wen KL (1996) Analysis of spectral ratios for estimating ground motion in deep basins. Bull Seismol Soc Am 86(3):646-54
    9. Field EH (1996) Spectral amplification in a sediment-filled valley exhibiting clear basin-edge-induced waves. Bull Seismol Soc Am 86(4):991-005
    10. Gao S, Liu H, Davis PM, Knopoff L (1996) Localized amplification of seismic waves and correlation with damage due to the Northridge earthquake: evidence for focusing in Santa Monica. Bull Seismol Soc Am 86(1B):S209
    11. Graves RW, Pitarka A, Somerville PG (1998) Ground-motion amplification in the Santa Monica area: effects of shallow basin-edge structure. Bull Seismol Soc Am 88(5):1224-242
    12. Gvirtzman Z, Louie JN (2010) 2D analysis of earthquake ground motion in Haifa Bay, Israel. Bull Seismol Soc Am 100(2):733-50 CrossRef
    13. Hartzell S, Cranswick E, Frankel A, Carver D, Meremonte M (1997) Variability of site response in the Los Angeles urban area. Bull Seismol Soc Am 87(6):1377-400
    14. Hartzell S, Ramirez-Guzman L, Carver D, Liu P (2010) Short baseline variations in site response and wave-propagation effects and their structural causes: four examples in and around the Santa Clara Valley, California. Bull Seismol Soc Am 100(5A):2264-286 CrossRef
    15. Hatayama K, Matsunami K, Iwata T, Irikura K (1995) Basin-induced Love waves in the eastern part of the Osaka basin. J Phys Earth 43(2):131-55 CrossRef
    16. Joyner WB (2000) Strong motion from surface waves in deep sedimentary basins. Bull Seismol Soc Am 90(6B):S95 CrossRef
    17. Kawase H (1996) The cause of the damage belt in kobe: “The Basin-Edge Effect- constructive interference of the direct S-wave with the basin-induced diffracted/Rayleigh waves. Seismol Res Lett 67(5):25-4 CrossRef
    18. Larsen S, Wiley R, Roberts P, House L (2001) Next-generation numerical modeling: incorporating elasticity, anisotropy and attenuation: Soc Explor Geophys. Proceedings from Ann Internat Mtg, Expanded Abstracts
    19. Luzón F, Ramírez L, Sánchez-Sesma FJ, Posadas A (2004) Simulation of the seismic response of sedimentary basins with vertical constant-gradient velocity for incident SH waves. Pure Appl Geophys 161(7):1533-547. doi:10.1007/s00024-004-2519-0 CrossRef
    20. Rovelli A, Scognamiglio L, Marra F, Caserta A (2001) Edge-diffracted 1-sec surface waves observed in a small-size intramountain basin (Colfiorito, central Italy). Bull Seismol Soc Am 91(6):1851-866 CrossRef
    21. Sánchez-Sesma FJ, Esquivel JA (1979) Ground motion on alluvial valleys under incident plane SH waves. BullSeismol Soc Am 69(4):1107-120
    22. Shani-Kadmiel S, Tsesarsky M, Louie JN, Gvirtzman Z (2012) Simulation of seismic-wave propagation through geometrically complex basins: the dead sea basin. Bull Seismol Soc Am 102(4)
    23. Spudich P, Olsen KB (2001) Fault zone amplified waves as a possible seismic hazard along the Calaveras fault in central California. Geophys Res Lett 28(13):2533-536 CrossRef
    24. Stewart JP, Ashford SA (1994) Preliminary report on the principal geotechnical aspects of the January 17, 1994 Northridge earthquake (94(8)). University of California, Earthquake Engineering Research Center
    25. Trifunac MD (1971) Surface motion of a semi-cylindrical alluvial valley for incident plane SH waves. Bull Seismol Soc Am 61(6):1755-770
    26. Wong HL, Trifunac MD (1974) Surface motion of a semi-elliptical alluvial valley for incident plane SH waves. Bull Seismol Soc Am 64(5):1389-408
  • 作者单位:Shahar Shani-Kadmiel (1)
    Michael Tsesarsky (2)
    John N. Louie (3)
    Zohar Gvirtzman (4)

    1. Department of Geological and Environmental Sciences, Ben Gurion University of the Negev, Beersheba, Israel
    2. Department of Structural Engineering, Ben Gurion University of the Negev, Beersheba, Israel
    3. Nevada Seismological Laboratory, University of Nevada, Reno, USA
    4. Geological Survey of Israel, Jerusalem, Israel
  • ISSN:1573-1456
文摘
We study the geometrical and material conditions which lead to focusing of seismic waves traveling across a concave velocity interface representing the boundary of a sedimentary basin within a denser rock. We approximate, using geometrical analysis for plane-waves, the combination of interface eccentricities and velocity ratios for which the seismic rays converge to a near surface region of the basin. 2-D finite difference modeling is used to compute Peak Ground Velocity (PGV) and spectral amplification across the basin. We show that effective geometrical focusing occurs for a narrow set of eccentricities and velocity ratios, where seismic energy is converged to a region of $\pm $ 0.5?km from surface. This mechanism leads to significant amplification of PGV at the center of the basin, up to a factor of 3; frequencies of the modeled spectrum are amplified up to the corner frequency of the source. Finally, we suggest a practical method for evaluating the potential for effective geometrical focusing in sedimentary basins.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700