Fabrication and shear strength analysis of Sn-3.5Ag/Cu-filled TSV for 3D microelectronic packaging
详细信息    查看全文
  • 作者:Ashutosh Sharma ; Do-Hyun Jung ; Myong-Hoon Roh ; Jae Pil Jung
  • 关键词:through ; Si ; via (TSV) ; electroplating ; electrolyte ; microstructure ; solder ; reflow
  • 刊名:Electronic Materials Letters
  • 出版年:2016
  • 出版时间:November 2016
  • 年:2016
  • 卷:12
  • 期:6
  • 页码:856-863
  • 全文大小:2,049 KB
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Condensed Matter Physics
    Electronics, Microelectronics and Instrumentation
    Optical and Electronic Materials
    Thermodynamics
    Characterization and Evaluation of Materials
  • 出版者:The Korean Institute of Metals and Materials, co-published with Springer Netherlands
  • ISSN:2093-6788
  • 卷排序:12
文摘
In this study, lead free Sn-3.5Ag solder bumps have been deposited on Cu-filled through-silicon via (TSV) by electroplating method. The solder bumps are plated using an acidic solution composed of SnSO4, H2SO4, Ag2SO4, thiourea and an additive. The current density is varied from −30 to −60 mA/cm2 to obtain the eutectic Sn-3.5Ag solder. The copper is electroplated in TSV using an acidic solution of CuSO4·5H2O, H2SO4, HCl, and an inhibitor. The bottom-up Cu-filling in TSV is achieved by a 3-step pulse periodic reverse (PPR) electroplating. It has been observed that the eutectic Sn-3.5Ag solder is achieved at a current density of −55 mA/cm2. The solder bumps are further reflowed onto TSV at 260 °C for 20 seconds, and shear strength of the formed Sn-3.5Ag/Cu-filled TSV joint is investigated. The results indicate the formation of Cu6Sn5 and Ag3Sn intermetallic compounds (IMCs) at the joint interface. It is found that with an increase of shear speed from 0.5-10 mm/s, the shear stress initially increases to a maximum, and then decreases beyond shear speed of 10 mm/s through 500 mm/s. It is shown that the ductile fracture mode gradually decreases beyond shear speed of 10 mm/s and disappears completely at 500 mm/s.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700