A hybrid RNN-GPOD surrogate model for real-time settlement predictions in mechanised tunnelling
详细信息    查看全文
文摘
Realistic 3D simulations of the tunnelling process are increasingly required to investigate the interactions between machine-driven tunnel construction and the surrounding soil in order to provide reliable estimates of the expected settlements and associated risks of damage for existing structures, in particular in urban tunnelling projects. To accomplish the step from large-scale computational analysis to real-time predictions of expected settlements during tunnel construction, the focus of this paper is laid on the generation of a numerically efficient hybrid surrogate modelling strategy, combining Gappy proper orthogonal decomposition (GPOD) and recurrent neural networks (RNN). In this hybrid RNN-GPOD surrogate model, the RNN is employed to extrapolate the time variant settlements at several monitoring points within an investigated surface area and GPOD is utilised to predict the whole field of surface settlements based on the RNN predictions and a POD radial basis functions approximation. Both parts of the surrogate model are created based on results of finite element simulations from geotechnical and process parameters varied within the range of intervals given in the design stage of a tunnel project. In the construction stage, the hybrid surrogate model is applied for real-time reliability analyses of the mechanised tunnelling process to support the machine operator in steering the tunnel boring machine.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700