Determining tidal turbine farm efficiency in the Western Passage using the disc actuator theory
详细信息    查看全文
  • 作者:Shivanesh Rao ; Huijie Xue ; Min Bao ; Simon Funke
  • 关键词:Tidal power ; Tidal turbine efficiency ; Disc actuator theory ; Tidal turbine farms ; Western passage ; Bay of Fundy ; Farm optimization
  • 刊名:Ocean Dynamics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:66
  • 期:1
  • 页码:41-57
  • 全文大小:4,025 KB
  • 参考文献:Bao M (2013) Tidal Turbine Array Optimization - using the Quoddu regions as an example, PhD thesis, Ocean University of China
    Betz A (1920) Das maximum der theoretisch mglichen ausnutzung des windes durch windmotoren. Z Gesamte Turbinewesen 17:307–309
    Blanchfield J, Garrett C, Rowe A, Wild P (2008) Tidal stream power resource assessment for Massett Sound, Haida Gwaii. J Power Energy 222(5):485–492CrossRef
    Brooks DA (2006) The tidal-stream energy resource in Passamaquoddy-Cobscook Bays: a fresh look at an old story. Renew Energy 31(14):2284–2295CrossRef
    Cameron M (2012) Flow field measurements for cross-field turbines. Master’s thesis, University of Maine
    Chen C, Beardsley R (2003) An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. J Atmos Ocean Technol 20:159–186CrossRef
    Chen C, Cowles G, Beardsley R (2006) An unstructured grid, finite volume coastal ocean model: FVCOM user manual 2nd edn. Technical report, SMAST/UMASSD Technical Report -06-0602
    Chen C, Huang H, Beardsley RC, Liu H, Xu Q, Cowles G (2007) A finite volume numerical approach for coastal ocean circulation studies: comparisons with finite difference models. Journal of Geophysical Research: Oceans 112(C3):n/a–n/a. C03018CrossRef
    Chen C, Huang H, Beardsley RC, Xu Q, Limeburner R, Cowles GW, Sun Y, Qi J, Lin H (2011) Tidal dynamics in the gulf of Maine and New England shelf: an application of FVCOM. Journal of Geophysical Research: Oceans 116(C12):n/a–n/a. C12010CrossRef
    Defne Z, Haas KA, Fritz HM (2011) Numerical modeling of tidal currents and the effects of power extraction on estuarine hydrodynamics along the Georgia Coast, {USA}. Renew Energy 36(12):3461–3471CrossRef
    Dupont F, Hannah CG, Greenberg D (2005) Modelling the sea level of the upper Bay of Fundy. Atmosphere-Ocean 43(1):33–47CrossRef
    Funke S, Farrell P, Piggott M (2014) Tidal turbine array optimisation using the adjoint approach. Renew Energy 63:658–673CrossRef
    Garrett C, Cummins P (2004) Generating power from tidal currents. J Waterw Port Coast Ocean Eng 130(3):114–118CrossRef
    Garrett C, Cummins P (2007) The efficiency of a turbine in a tidal channel. J Fluid Mech 588:243–251
    Greenberg DA, Shore JA, Page FH, Dowd M (2005) A finite element circulation model for embayments with drying intertidal areas and its application to the Quoddy region of the Bay of Fundy. Ocean Model 10(12):211–231. The Second International Workshop on Unstructured Mesh Numerical Modelling of Coastal, Shelf and Ocean FlowsCrossRef
    Hasegawa D, Sheng J, Greenberg D, Thompson K (2011) Far-field effects of tidal energy extraction in the Minas Passage on tidal circulation in the Bay of Fundy and Gulf of Maine using a nested-grid coastal circulation model. Ocean Dyn 61(11):1845–1868CrossRef
    Karsten RH, McMillan JM, Lickley MJ, Haynes RD (2008) Assessment of tidal current energy in the Minas Passage, Bay of Fundy. Proc IME A J Power Energy 222(5):493–507CrossRef
    Lynch DR, Naimie CE (1993) The M2 tide and its residual on the outer banks of the Gulf of Maine. J Phys Oceanogr 23:2222–2253CrossRef
    McMillian J, Lickley M (2008) The potential of tidal power from the Bay of Fundy. Society of Industrial and Applied Mathematics
    Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20(4):851–875CrossRef
    Plew DR, Stevens CL (2013) Numerical modelling of the effect of turbines on currents in a tidal channel—Tory Channel, New Zealand. Renew Energy 57:269–282CrossRef
    Roc T, Conley DC, Greaves D (2013) Methodology for tidal turbine representation in ocean circulation model. Renew Energy 51:448–464CrossRef
    Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91:99CrossRef
    U.S. EIA (2014) Annual energy outlook. Technical report, U.S. Energy Information Administration
    Vennell R (2010) Tuning turbines in a tidal channel. J Fluid Mech 663:253–267CrossRef
    Vennell R (2011) Tuning tidal turbines in-concert to maximise farm efficiency. J Fluid Mech 671:587–604CrossRef
    Vennell R (2012) Realizing the potential of tidal currents and the efficiency of turbine farms in a channel. Renew Energy 47:95–102CrossRef
    Vennell R (2013) Exceeding the Betz limit with tidal turbines. Renew Energy 55:277–285CrossRef
    Xu D, Xue H (2011) A numerical study of horizontal dispersion in a macro tidal basin. Ocean Dyn 61(5):623–637CrossRef
    Xu D, Xue H, Greenberg D (2006) A numerical study of the circulation and drifter trajectories in Cobscook Bay, chapter 11, pp 176–195. American Society of Civil Engineers
    Xue H, Bao M, Bao X, Cameron M (2013) A numerical study of tidal farm efficiency in the Western Passage, US and Canada. In: OCEANS - Bergen, 2013 MTS/IEEE, pp 1–10
    Yang Z, Wang T, Copping AE (2013) Modeling tidal stream energy extraction and its effects on transport processes in a tidal channel and bay system using a three-dimensional coastal ocean model. Renew Energy 50:605–613CrossRef
  • 作者单位:Shivanesh Rao (1)
    Huijie Xue (1)
    Min Bao (2)
    Simon Funke (3)

    1. School of Marine Sciences, University of Maine, Orono, ME, 04469-5706, USA
    2. State Key Laboratory of Satellite Ocean Environment Dynamics, 2nd Institute of Oceanography, Hangzhou, 310012, China
    3. Center for Biomedical Computing, Simula Research Laboratory, Fornebu, Norway
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Oceanography
    Geophysics and Geodesy
    Meteorology and Climatology
    Fluids
    Structural Foundations and Hydraulic Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1616-7228
文摘
Tidal power potential is determined across the Western Passage in Passamaquoddy Bay using the Finite Volume Community Ocean Model (FVCOM). The tidal turbines are implemented in FVCOM using the disc actuator theory method to determine the power potential for different densities and arrangements of tidal turbines. At the most efficient setting for 10 turbines across the Western Passage, the optimal turbine drag coefficient is 2.0 and the average power output, in a 2-week period, is ∼819 kW. Results suggest that for a single row of turbines, the addition of turbines decreases the efficiency of the turbine farm, but this decrease in efficiency is less than 7 %. A parallel distribution of turbines in an array diminishes the average power for turbines in the shadow of other turbines, while staggered distribution in an array increases the average power extraction for some turbines, due to the speed gains in the gaps between turbines. A simple tidal farm optimization using the OpenTidalFarm (OTF) model suggests a similar tidal farm distribution.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700