Structural transformations in silver nanoparticles
详细信息    查看全文
文摘
A molecular dynamics simulation was performed for silver clusters of 147, 309, and 561 atoms with the initial cuboctahedral habit in the temperature range 0–1000 K with an embedded atom potential for silver. Structural transitions of the silver clusters to complex twins (icosahedral habit) with coherent (111)/(111) boundaries over all edges of icosahedra were found, which started at temperatures of 50 K, 350 K, and 700 K, respectively. To analyze the structural transformations in nanoparticles, an algorithm is proposed based on a simplicial Delaunay decomposition (Delaunay triangulation). It was found that after the transition of silver nanoparticles to complex twins, the atomic motion becomes vibrational; the atoms vibrate around the sites that correspond to the vertices of the regular polyhedra. In the case of the 147-atom silver nanoparticle, the polyhedra are arranged in the following sequence, starting from the center of mass: icosahedron (12 atoms), icosododecahedron (30 atoms), icosahedron (12 atoms), dodecahedron (20 atoms), truncated icosahedron (60 atoms, isostructural with fullerene C60), icosahedron (12 atoms), and one atom at the center of mass.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700