The Adaptive Road Routing Recommendation for Traffic Congestion Avoidance in Smart City
详细信息    查看全文
  • 作者:Sheng-Tzong Cheng (1)
    Jian-Pan Li (1)
    Gwo-Jiun Horng (2)
    Kuo-Chuan Wang (1)
  • 关键词:FNN ; Intersection ; delay prediction ; Traffic ; signal control ; Traffic congestion
  • 刊名:Wireless Personal Communications
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:77
  • 期:1
  • 页码:225-246
  • 全文大小:
  • 参考文献:1. Srinivasan, D., Min Chee, C., & Cheu, R. L. (2006). Neural networks for real-time traffic signal control. / IEEE Transactions on Intelligent Transportation Systems, / 7(3), 261鈥?72. CrossRef
    2. Sanchez-Medina, J. J., Galan-Moreno, M. J., & Rubio-Royo, E. (2010). Traffic signal optimization in 鈥淟a Almozara鈥?district in saragossa under congestion conditions, using genetic algorithms, traffic microsimulation, and cluster computing. / IEEE Transactions on Intelligent Transportation Systems, / 11(1), 132鈥?41. CrossRef
    3. Balaji, P. G., German, X., & Srinivasan, D. (2010). Urban traffic signal control using reinforcement learning agents. / Intelligent Transport Systems, / 4(3), 177鈥?88. CrossRef
    4. Arel, I., Liu, C., Urbanik, T., et al. (2010). Reinforcement learning-based multi-agent system for network traffic signal control. / Intelligent Transport Systems, / 4(2), 128鈥?35. CrossRef
    5. Prashanth, L. A., & Bhatnagar, S. (2011). Reinforcement learning with function approximation for traffic signal control. / IEEE Transactions on Intelligent Transportation Systems, / 12(2), 412鈥?21. CrossRef
    6. Abdoos, M., Mozayani, N., & Bazzan, A. L. C. (2011). Traffic light control in non-stationary environments based on multi agent Q-learning. In / 2011 14th International IEEE conference on intelligent transportation systems (ITSC) (pp. 1580鈥?585).
    7. Junhua, W., Anlin, W., & Du, N. (2005). Study of self-organizing control of traffic signals in an urban network based on cellular automata. / IEEE Transactions on Vehicular Technology, / 54(2), 744鈥?48. CrossRef
    8. Lo-Yao, Y., Yen-Cheng, C., & Jiun-Long, H. (2011). ABACS: An attribute-based access control system for emergency services over vehicular ad hoc networks. / IEEE Journal on Selected Areas in Communications, / 29(3), 630鈥?43. CrossRef
    9. Traffic signal preemption. http://en.wikipedia.org/wiki/Traffic_signal_preemption.
    10. Milanes, V., Perez, J., Onieva, E., et al. (2010). Controller for urban intersections based on wireless communications and fuzzy logic. / IEEE Transactions on Intelligent Transportation Systems, / 11(1), 243鈥?48. CrossRef
    11. Gokulan, B. P., & Srinivasan, D. (2010). Distributed geometric fuzzy multiagent urban traffic signal control. / IEEE Transactions on Intelligent Transportation Systems, / 11(3), 714鈥?27. CrossRef
    12. Sazi, M. Y., & Gedizlioglu, E. (2005). A fuzzy logic multi-phased signal control model for isolated junctions. / Transportation Research Part C: Emerging Technologies, / 13(1), 19鈥?6. CrossRef
    13. Niittymaki, J., & Turunen, E. (2003). Traffic signal control on similarity logic reasoning. / Fuzzy Sets System, / 133(1), 109鈥?31. CrossRef
    14. Mirchandani, P. B., & Zou, N. (2007). Queuing models for analysis of traffic adaptive signal control. / IEEE Intelligent on Transportation Systems, / 8(1), 50鈥?9. CrossRef
    15. Azimirad, E., Pariz, N., & Sistani, M. B. N. (2010). A novel fuzzy model and control of single intersection at urban traffic network. / IEEE Systems Journal, / 4(1), 107鈥?11. CrossRef
    16. Jee-Hyong, L., & Hyung, L.-K. (1999). Distributed and cooperative fuzzy controllers for traffic intersections group. / IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, / 29(2), 263鈥?71. CrossRef
    17. Min, C. C., Srinivasan, D., & Cheu, R. L. (2003). Cooperative, hybrid agent architecture for real-time traffic signal control. / IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, / 33(5), 597鈥?07. CrossRef
    18. Guojiang, S., & Xiangjie, K. (2009). Study on road network traffic coordination control technique with bus priority. / IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, / 39(3), 343鈥?51. CrossRef
    19. Patel, M., & Ranganathan, N. (2001). IDUTC: An intelligent decision-making system for urban traffic-control applications. / IEEE Transactions on Vehicular Technology, / 50(3), 816鈥?29. CrossRef
    20. Henry, J. J., Farges, J. L., & Gallego, J. L. (1998). Neuro-fuzzy techniques for traffic control. / Control Engineering Practice, / 6(6), 755鈥?61. CrossRef
    21. Wiering, M., Vreeken, J., van Veenen, J., & Koopman, A. (2004). Simulation and optimization of traffic in a city. In / IEEE intelligent vehicles, symposium (pp. 453鈥?58).
    22. K. D. & R. C., SUMO (Simulation of Urban MObility), German Aerospace Centre. (2007). http://sumo.sourceforge.net/.
    23. The Network Simulator鈥擭S-2. http://www.isi.edu/nsnam/ns/.
  • 作者单位:Sheng-Tzong Cheng (1)
    Jian-Pan Li (1)
    Gwo-Jiun Horng (2)
    Kuo-Chuan Wang (1)

    1. Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
    2. Department of Information Management, Fortune Institute of Technology, Kaohsiung, Taiwan
  • ISSN:1572-834X
文摘
A fuzzy neural network (FNN) calculates the traffic-light system and extends or terminates the green signal according to the traffic situation at the given junction while also computing from adjacent intersections. In the presence of public transports, the system decides which signal(s) should be red and how much of an extension should be given to green signals for the priority-based vehicle. Using fuzzy logic, we propose a model with a neural network for public transport, normal cars, and motorcycles. The model controls traffic-light systems to reduce traffic congestion and help vehicles with high priority pass through. The system also monitors the density of car flows and makes real-time decisions accordingly. In order to verify the proposed design algorithm, we adapted the simulations of Simulation of Urban MObility, ns2, and green light district simulation method to our model, and further results depict the performance of the proposed FNN in handling traffic congestion and priority-based traffic. The promising results present the efficiency and the scope of the proposed multi-module architecture for future development in traffic control.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700