Changes in the potential habitats of 10 dominant evergreen broad-leaved tree species in the Taiwan-Japan archipelago
详细信息    查看全文
  • 作者:Katsuhiro Nakao (1)
    Motoki Higa (2)
    Ikutaro Tsuyama (3)
    Cheng-Tao Lin (4)
    Shih-To Sun (4)
    Jian-Rong Lin (4)
    Chyi-Rong Chiou (4)
    Tzu-Ying Chen (5)
    Tetsuya Matsui (1)
    Nobuyuki Tanaka (3)
  • 关键词:East Asia ; Climate change ; Species distribution models ; Multi general circulation models ; Historical range shifts
  • 刊名:Plant Ecology
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:215
  • 期:6
  • 页码:639-650
  • 全文大小:
  • 参考文献:1. Akaike H (1974) A new look at statistical model identification. IEEE Trans Automat Control 19:716-22 CrossRef
    2. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York
    3. Chiou CR et al (2009) The first national vegetation inventory in Taiwan. Taiwan J For Sci 24:295-02
    4. Dormann CF et al (2007) Methods to account for spatial autocorrelation in the analysis of species distribution data: a review. Ecography 30:609-28 CrossRef
    5. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677-97 CrossRef
    6. García-Valdés R, Zavala MA, Araújo MB, Purves DW (2013) Chasing a moving target: projecting climate change-induced shifts in non-equilibrial tree species distributions. J Ecol 101:441-53 CrossRef
    7. Hampe A, Jump AS (2011) Climate relicts: past, present, future. Annu Rev Ecol Evol Syst 42:313-33 CrossRef
    8. Heikkinen RK et al (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30:751-77 CrossRef
    9. Hijmans RJ et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965-978 CrossRef
    10. Hotta M (1974) History and geography of plants. Sanseido, Tokyo, p 400
    11. Huang SF, Hwang SY, Lin TP (2002) Spatial pattern of chloroplast DNA variation of / Cyclobalanopsis glauca in Taiwan and East Asia. Mol Ecol 11:2349-358 CrossRef
    12. IPCC (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis, Chap 10. Cambridge University Press, Cambridge
    13. Kamijo T (2009) Castanopsis sieboldii. In: Nihon Jumokushi K, Hensyuu Iinkai J (eds) Silvics of Japan. Japan Forestry Investigation Committee, Tokyo, pp 433-58
    14. Kira T (1977) A climatological interpretation of Japanese vegetation zones. In: Miyawaki A, Tuxen R (eds) Vegetation science and environmental protection. Maruzen, Tokyo, pp 21-0
    15. Lai MJ (2003) The flora and vegetation of Taiwan. Morning Star Publishing, Taipei
    16. Liao RC (1988) The taxonomic revisions of the family Fagaceae in Taiwan, Department of Forestry. National Taiwan University, Taipei, p 239
    17. Márquez M, Real R, Olivero J, Estrada A (2011) Combining climate with other influential factors for modelling the impact of climate change on species distribution. Clim Change 108:135-57 CrossRef
    18. Matsuoka K, Miyoshi N (1998) The illustrated vegetation history of the Japanese archipelago. In: Yasuda Y, Miyoshi N (eds) Chapter 3-4. Asakura-Shoten, Tokyo, pp 236-44
    19. Meier ES, Lischke H, Schmatz DR, Zimmermann NE (2012) Climate, competition and connectivity affect future migration and range of European trees. Glob Ecol Biogeogr 21:164-78 CrossRef
    20. Nakamura K, Suwa R, Denda T, Yokota M (2009) Geohistorical and current environmental influences on floristic differentiation in the Ryukyu archipelago, Japan. J Biogeogr 36:919-28 CrossRef
    21. Nakao K, Matsui T, Horikawa M, Tsuyama I, Tanaka T (2011) Assessing the impact of land use and climate change on the EBL species of / Quercus acuta in Japan. Plant Ecol 212:229-43 CrossRef
    22. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37-2 CrossRef
    23. Pearson RG, Dawson TE, Liu C (2004) Modeling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography 27:285-98 CrossRef
    24. Real R, Romero D, Olivero J, Estrada A, Márquez A (2013) Estimating how inflated or obscured effects of climate affect forecasted species distribution. PLoS ONE 8(1):e53646 CrossRef
    25. Sakai A (1975) Freezing resistance of evergreen and deciduous broad-leaf trees in Japan with special reference to their distribution. Jpn J Ecol 25:101-11
    26. Svenning JC, Skov F (2004) Limited filling of the potential range in European tree species. Ecol Lett 7:565-73 CrossRef
    27. Takhtajan A (1986) Floristic regions of the world. University of California Press, Los Angeles
    28. Tanaka N (2012) Vegetation databases for the twenty-first century. In: Dengler J, Oldeland J, Jansen F, Chytry M, Ewald J, Finckh M, Gl?ckler F, Lopez-Gonzalez G, Peet RK, Schaminée JHJ (eds) Biodiversity & Ecology, Phytosociological Relevé Database of Japan (PRDB), Sapporo, p 308
    29. Thomas CD, Hill JK, Anderson BJ, Bailey S, Beale CM (2011) A framework for assessing threats and benefits to species responding to climate change. Methods Ecol Evol 2:125-42 CrossRef
    30. Wood SN (2003) Thin plate regression splines. J R Stat Soc Ser B 65(1):95-14 CrossRef
    31. Wood SN (2006) Generalized additive models: an introduction with R. CRC Press, Boca Raton
    32. Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39:561-77
  • 作者单位:Katsuhiro Nakao (1)
    Motoki Higa (2)
    Ikutaro Tsuyama (3)
    Cheng-Tao Lin (4)
    Shih-To Sun (4)
    Jian-Rong Lin (4)
    Chyi-Rong Chiou (4)
    Tzu-Ying Chen (5)
    Tetsuya Matsui (1)
    Nobuyuki Tanaka (3)

    1. Department of Plant Ecology, Forestry and Forest Products Research Institute, 1, Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
    2. Laboratory of Plant Ecology, Faculty of Science, Kochi University, 2-5-1 Akebono-cho, Kochi, 780-8520, Japan
    3. Hokkaido Research Center, Forestry and Forest Products Research Institute, 7 Hitsujigaoka, Toyohira-ku, Sapporo, Hokkaido, Japan
    4. School of Forestry and Resource Conservation, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
    5. Department of Natural Resources, National Ilan University, 1, Sec. 1, Shen-Lung Road, I-Lan, 260, Taiwan
  • ISSN:1573-5052
文摘
Ecosystem vulnerability to climate change remains elusive in the species-rich Taiwan-Japan archipelago. We predicted potential habitats (PHs) of ten dominant evergreen broad-leaved tree species by using the current and twenty potential climate change scenarios using generalised additive models. The presence/absence records of each species, extracted from vegetation database, were used as response variables. Four climatic and one spatial variables were used as explanatory variables. The results showed that the interaction terms of spatial variable, indicating historical range shifts or species interactions, restricted the distribution of all the target species as much as that by the each climatic variable. The PHs of all the target species were predicted to consistently increase, and in particular, to expand northward and upward to the cool temperate zone. However, the PHs were predicted to decrease within the range of 23.6-8.1?% in the Ryukyu Islands for Castanopsis sieboldii and Elaeocarpus japonica, respectively, and within the range of 32.4-2.3?% in Taiwan for Camellia japonica and Distylium racemosum, respectively. These findings suggest that the four species will be vulnerable at the southern range limits; however, the remaining six species will potentially increase within the PH areas in the future at all regions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700