Effect of biocidal additives on the mesostructure of epoxy–siloxane bioactive coatings
详细信息    查看全文
  • 作者:T. V. Khamova ; O. A. Shilova ; G. P. Kopitsa…
  • 关键词:sol–gel method ; epoxy–siloxane compositions ; biocides ; mesostructure ; small ; angle X ; ray scattering
  • 刊名:Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:10
  • 期:1
  • 页码:113-122
  • 全文大小:571 KB
  • 参考文献:1.Th. Warscheid and J. Braams, Int. Biodeterior. Biodegrad. 46, 343 (2000).CrossRef
    2.D. Yu. Vlasov, M. S. Zelenskaya, and O. V. FrankKamenetskaya, Mikol. Fitopatol. 36 (3), 7 (2002).
    3.C. F. Brinker and G. W. Scherer, Sol–Gel Science. The Physics and Chemistry of Sol–Gel Processing (Academic, San Diego, 1990).
    4.O. A. Shilova, J. Sol–Gel Sci. Technol. 68, 387 (2013).CrossRef
    5.C. A. Price, Stone Conservation: An Overview of Current Research (Getty Conservat. Inst., Los Angeles, CA, 1996).
    6.E. F. Doehne and C. A. Price, Stone Conservation: An Overview of Current Research (Getty Conservat. Inst., Los Angeles, CA, 2010).
    7.D. Yu. Vlasov, M. A. Arkhipova, V. Yu. Dolmatov, et al., Probl. Med. Mikol. 8 (2), 26 (2006).
    8.V. Yu. Dolmatov, Russ. Chem. Rev. 76, 339 (2007).CrossRef
    9.I. V. Shugalei, A. P. Voznyakovskii, A. V. Garabadzhiu, I. V. Tselinskii, A. M. Sudarikov, and M. A. Ilyushin, Russ. J. Gen. Chem. 83, 851 (2013).CrossRef
    10.L. Bergamonti, I. Alfieri, A. Lorenzi, et al., Appl. Surf. Sci. 282, 165 (2013).CrossRef
    11.A. J. Fonseca, F. Pina, M. F. Macedo, et al., Int. Biodeterior. Biodegrad. 64, 388 (2010).CrossRef
    12.C. Selwitz, Research in Conservation (Getty Conservat. Inst., Los Angeles, CA, 1992).
    13.P. Cardiano, S. Sergi, M. Lazzari, and P. Piraino, J. Polym. 43, 6635 (2002).CrossRef
    14.T. V. Khamova, O. A. Shilova, D. Yu. Vlasov, et al., Stroit. Mater., No. 4, 86 (2007).
    15.T. V. Khamova, O. A. Shilova, D. Yu. Vlasov, Yu. V. Ryabusheva, V. M. Mikhal’chuk, V. K. Ivanov, O. V. Frank-Kamenetskaya, A. M. Marugin, and V. Yu. Dolmatov, Inorg. Mater. 48, 702 (2012).CrossRef
    16.Yu. S. Lipatov and L. M. Sergeeva, Interpenetrating Polymer Networks (Naukova Dumka, Kiev, 1979) [in Russian].
    17.S. R. Davis, A. R. Brough, and A. Atkinson, J. NonCryst. Solids 315, 197 (2003).CrossRef
    18.C.-M. Chung, S.-J. Lee, J.-C. Kim, and D.-O. Jang, J. Non-Cryst. Solids 311, 195 (2002).CrossRef
    19.G. P. Wang, T. C. Chang, Y. S. Hong, and Y. S. Chiu, Polymer 43, 2191 (2002).CrossRef
    20.L. Matejka, J. Plestil, and K. Dusek, J. Non-Cryst Solids 226, 114 (1998).CrossRef
    21.Yu. P. Gomza, V. V. Klepko, S. V. Zhil’tsova, V. M. Mikhal’chuk, L. A. Savenkova, T. E. Konstantinova, and V. A. Beloshenko, Polymer Sci., Ser. A 52, 628 (2010).CrossRef
    22.M. Spirkova, J. Brus, D. Hlavata, et al., J. Appl. Polym. Sci. 92, 937 (2004).CrossRef
    23.T. V. Khamova, O. A. Shilova, G. P. Kopitsa, L. Almasy, and L. Rosta, Phys. Solid State 56, 105 (2014).CrossRef
    24.J. Teixera, On Growth and Form: Fractal and Non-Fractal Pattern in Physics, Ed. by H. E. Stanley and N. Ostrovsky (Martinus Nijloff, Boston, 1986), p. 145.
    25.P. W. Schmidt, Modern Aspects of Small-Angle Scattering, Ed. by H. Brumberger (Kluwer Academic, Dordrecht, 1995), p. 30.
    26.A. P. Shpak, V. V. Shilov, O. A. Shilova, and Yu. A. Kunitskii, Diagnostics of Nanosystems. Multilevel Fractal Nanostructures (Akademperiodika, Kiev, 2004), Part II [in Russian].
    27.H. D. Bale and P. W. Schmidt, Phys. Rev. Lett. 53, 596 (1984).CrossRef
    28.G. Beaucage, J. Appl. Crystallogr. 28, 717 (1995).CrossRef
    29.G. Beaucage and D. W. Schaefer, J. Non-Cryst. Solids 172–174, 797 (1994).CrossRef
    30.A. Guinier and G. Fournet, Small-Angle Scattering of X-rays (Wiley, New York, 1955), p. 4.
    31.G. Porod, in Small Angle X-ray Scattering, Ed. by O. Glatter and O. Kratky (Academic, New York, 1982).
    32.L. A. Feigin and D. I. Svergun, Structure Analysis by Small-Angle X-ray and Neutron Scattering (Plenum, New York, 1987).CrossRef
  • 作者单位:T. V. Khamova (1)
    O. A. Shilova (1)
    G. P. Kopitsa (2)
    B. Angelov (3)
    A. Zhigunov (3)

    1. Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, St. Petersburg, 193034, Russia
    2. Petersburg Nuclear Physics Institute, St. Petersburg, Gatchina, 188300, Russia
    3. Institute of Macromolecular Chemistry, Prague, 16206, Czech Republic
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Surfaces and Interfaces and Thin Films
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1819-7094
文摘
We investigate the structure formation of sol–gel synthesized epoxy–siloxane compositions with a ratio of the main precursors of R TEOS/EPONEX 1510 = 27/27 wt %, modified with biocidal additives of detonation nanodiamonds (c DND = 0.13, 0.27, and 0.58 wt %), titanium dioxide (\(^cTi{O_2}\) = 0.1, 0.3, and 0.5 wt %), and Photosens (c Ph = 0.04, 0.1, and 0.27 wt %), by small-angle X-ray scattering. Based on small-angle X-ray scattering (SAXS) data, it is revealed that the synthesized epoxy–siloxane xerogels are systems with a twolevel fractal structure, in the formation of which the siloxane component plays the dominant role. It is found that the introduction of small additions of detonation synthesis, titanium dioxide, or Photosens (less than 1 wt %) into the epoxy–siloxane compositions affects both the fractal dimension D S of the surface and the size d c1 of primary particles, and the fractal dimension D M and sizes d c2 of mass fractal clusters formed from them.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700