A Low-Protein, High-Carbohydrate Diet Stimulates Thermogenesis in the Brown Adipose Tissue of Rats via ATF-2
详细信息    查看全文
  • 作者:Suélem A. de França ; Maísa P. dos Santos ; Franciele Przygodda…
  • 关键词:Brown adipose tissue ; Thermogenesis ; Low ; protein ; High ; carbohydrate diet ; Rats
  • 刊名:Lipids
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:51
  • 期:3
  • 页码:303-310
  • 全文大小:1,192 KB
  • 参考文献:1.Cannon B, Nedergaard J (1986) Brown adipose tissue thermogenesis in neonatal and cold-adapted animals. Biochem Soc Trans 14(2):233–236CrossRef PubMed
    2.Nedergaard J, Cannon B (1985) [3H]GDP binding and thermogenin amount in brown adipose tissue mitochondria from cold-exposed rats. Am J Physiol 248(3 Pt 1):C365–C371PubMed
    3.Himms-Hagen J, Hogan S, Zaror-Behrens G (1986) Increased brown adipose tissue thermogenesis in obese (ob/ob) mice fed a palatable diet. Am J Physiol 250(3 Pt 1):E274–E281PubMed
    4.Rothwell NJ, Stock MJ (1979) A role for brown adipose tissue in diet-induced thermogenesis. Nature 281(5726):31–35CrossRef PubMed
    5.Rothwell NJ, Stock MJ (1997) A role for brown adipose tissue in diet-induced thermogenesis. Obes Res 5:650–656CrossRef PubMed
    6.Sell H, Deshaies Y, Richard D (2004) The brown adipocyte: update on its metabolic role. Int J Biochem Cell Biol 36(11):2098–2104CrossRef PubMed
    7.Saito M (2014) Human brown adipose tissue: regulation and anti-obesity potential. Endocr J 61(5):409–416CrossRef PubMed
    8.Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517CrossRef PubMed PubMedCentral
    9.van Marken Lichtenbelt WD, Schrauwen P (2011) Implications of nonshivering thermogenesis for energy balance regulation in humans. Am J Physiol Regul Integr Comp Physiol 301:R285–R296CrossRef PubMed
    10.Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293:E444–E452CrossRef PubMed
    11.Seale P, Lazar MA (2009) Brown fat in humans: turning up the heat on obesity. Diabetes 58(7):1482–1484CrossRef PubMed PubMedCentral
    12.Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1):277–359CrossRef PubMed
    13.Lafontan M, Berlan M (1993) Fat cell adrenergic receptors and the control of white and brown fat cell function. J Lipid Res 34(7):1057–1091PubMed
    14.Holm C (2003) Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem Soc Trans 31(Pt 6):1120–1124CrossRef PubMed
    15.Rim JS, Xue B, Gawronska-Kozak B, Kozak LP (2004) Sequestration of thermogenic transcription factors in the cytoplasm during development of brown adipose tissue. J Biol Chem 279(24):25916–25926CrossRef PubMed
    16.Thonberg H, Fredriksson JM, Nedergaard J, Cannon B (2002) A novel pathway for adrenergic stimulation of cAMP-response-element-binding protein (CREB) phosphorylation: mediation via alpha1-adrenoceptors and protein kinase C activation. Biochem J 364(Pt 1):73–79CrossRef PubMed PubMedCentral
    17.Canettieri G, Celi FS, Baccheschi G, Salvatori L, Andreoli M, Centanni M (2000) Isolation of human type 2 deiodinase gene promoter and characterization of a functional cyclic adenosine monophosphate response element. Endocrinology 141(5):1804–1813PubMed
    18.Golozoubova V, Gullberg H, Matthias A, Cannon B, Vennstrom B, Nedergaard J (2004) Depressed thermogenesis but competent brown adipose tissue recruitment in mice devoid of all hormone-binding thyroid hormone receptors. Mol Endocrinol 18(2):384–401CrossRef PubMed
    19.Cao W, Daniel KW, Robidoux J, Puigserver P, Medvedev AV, Bai X, Floering LM, Spiegelman BM, Collins S (2004) p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol Cell Biol 24(7):3057–3067CrossRef PubMed PubMedCentral
    20.Gesta S, Tseng YH, Kahn CR (2007) Developmental origin of fat: tracking obesity to its source. Cell 131(2):242–256CrossRef PubMed
    21.Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M, Tavernier G, Langin D, Spiegelman BM (2007) Transcriptional control of brown fat determination by PRDM16. Cell Metab 6(1):38–54CrossRef PubMed PubMedCentral
    22.Aparecida de Franca S, Dos Santos MP, Garofalo MA, Navegantes LC, Kettelhut Ido C, Lopes CF, Kawashita NH (2009) Low protein diet changes the energetic balance and sympathetic activity in brown adipose tissue of growing rats. Nutrition 25(11–12):1186–1192CrossRef PubMed
    23.Buzelle SL, Santos MP, Baviera AM, Lopes CF, Garofalo MA, Navegantes LC, Kettelhut IC, Chaves VE, Kawashita NH (2010) A low-protein, high-carbohydrate diet increases the adipose lipid content without increasing the glycerol-3-phosphate or fatty acid content in growing rats. Can J Physiol Pharmacol 88(12):1157–1165CrossRef PubMed
    24.Santos MP, Franca SA, Santos JT, Buzelle SL, Bertolini GL, Garófalo MA, Kettelhut IC, Frasson D, Chaves VE, Kawashita NH (2012) A low-protein, high-carbohydrate diet increases fatty acid uptake and reduces norepinephrine-induced lipolysis in rat retroperitoneal white adipose tissue. Lipids 47(3):279–289CrossRef PubMed
    25.Menezes AL, Pereira MP, Buzelle SL, Santos MP, França SA, Baviera AM, Andrade CM, Garófalo MA, do Carmo Kettelhut I, Chaves VE, Kawashita NH (2013) A low protein, high-carbohydrate diet increases de novo fatty acid synthesis from glycerol and glycerokinase content in the liver of growing rats. Nutr Res 33(6):494–502CrossRef PubMed
    26.Feres DD, Dos Santos MP, Buzelle SL, Pereira MP, de Franca SA, Garófalo MA, Andrade CM, Froelich M, de Almeida FJ, Frasson D, Chaves VE, Kawashita NH (2013) In vitro TNF-alpha- and noradrenaline-stimulated lipolysis is impaired in adipocytes from growing rats fed a low-protein, high-carbohydrate diet. Lipids 48(8):779–786CrossRef PubMed
    27.Aparecida de Franca S, Pavani Dos Santos M, Queiroz Nunes, da Costa RV, Froelich M, Buzelle SL, Chaves VE, Giordani MA, Pereira MP, Colodel EM, Marlise Balbinotti Andrade C, Kawashita NH (2014) Low-protein, high-carbohydrate diet increases glucose uptake and fatty acid synthesis in brown adipose tissue of rats. Nutrition 30(4):473–480CrossRef PubMed
    28.Batistela E, Pereira MP, Siqueira JT, Paula-Gomes S, Zanon NM, Oliveira EB, Navegantes LC, Kettelhut IC, Andrade CM, Kawashita NH, Baviera AM (2014) Decreased rate of protein synthesis, caspase-3 activity, and ubiquitin-proteasome proteolysis in soleus muscles from growing rats fed a low-protein, high-carbohydrate diet. Can J Physiol Pharmacol 92(6):445–454CrossRef PubMed
    29.Pereira MP, Buzelle SL, Batistela E, Doneda DL, França SA, Santos MP, Andrade CM, Garófalo MA, do Carmo Kettelhut I, Navegantes LC, Chaves VE, Bertolini GL, Kawashita NH (2014) High glucose uptake in growing rats adapted to a low-protein, high-carbohydrate diet determines low fasting glycemia even with high hepatic gluconeogenesis. Can J Physiol Pharmacol 92(6):460–466CrossRef PubMed
    30.Patel MS, Srinivasan M (2011) Metabolic programming in the immediate postnatal life. Ann Nutr Metab 58:18–28CrossRef PubMed PubMedCentral
    31.Steyn NP, Mchiza Z, Hill J, Davids YD, Hinrichsen E, Opperman M, Rumbelow J, Jacobs P (2013) Nutritional contribution of street foods to the diet of people in developing countries: a systematic review. Public Health Nutr 17:1–12
    32.Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123(11):1939–1951PubMed
    33.Patel VM, Heinel LA, Provencio JJ, Vinall PE, Kramer MS, Rosenwasser RH (2002) Validation of image analysis for enzyme histochemical and immunocytochemical staining. Biotech Histochem 77(4):213–221CrossRef PubMed
    34.Siegrist-Kaiser CA, Pauli V, Juge-Aubry CE, Boss O, Pernin A, Chin WW, Cusin I, Rohner-Jeanrenaud F, Burger AG, Zapf J, Meier CA (1997) Direct effects of leptin on brown and white adipose tissue. J Clin Invest 100(11):2858–2864CrossRef PubMed PubMedCentral
    35.Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRef PubMed
    36.Bordicchia M, Liu A, Amri EZ, Ailhaud G, Fulgheri PD, Zhang C, Takahashi N, Sarzani R, Collins S (2012) Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest 122(3):1022–1036CrossRef PubMed PubMedCentral
    37.Chen HY, Liu Q, Salter AM, Lomax MA (2013) Synergism between cAMP and PPARγ Signalling in the Initiation of UCP1 Gene Expression in HIB1B Brown Adipocytes. PPAR Res 2013:476049PubMed PubMedCentral
    38.Sell H, Berger JP, Samson P, Castriota G, Lalonde J, Deshaies Y, Richard D (2004) Peroxisome proliferator-activated receptor gamma agonism increases the capacity for sympathetically mediated thermogenesis in lean and ob/ob mice. Endocrinology 145(8):3925–3934CrossRef PubMed
  • 作者单位:Suélem A. de França (1)
    Maísa P. dos Santos (1)
    Franciele Przygodda (2)
    Maria Antonieta R. Garófalo (2)
    Isis C. Kettelhut (3)
    Diego A. Magalhães (1)
    Kalinne S. Bezerra (4)
    Edson M. Colodel (4)
    Andreas D. Flouris (5)
    Cláudia M. B. Andrade (1)
    Nair H. Kawashita (1)

    1. Department of Chemistry, Biochemistry Laboratory, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
    2. Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
    3. Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
    4. Department of Veterinary Science, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
    5. FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Life Sciences
    Biochemistry
    Medicinal Chemistry
    Microbial Genetics and Genomics
    Nutrition
    Bioorganic Chemistry
    Medical Biochemistry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1558-9307
文摘
The aim of this study was to evaluate thermogenesis in the interscapular brown adipose tissue (IBAT) of rats submitted to low-protein, high-carbohydrate (LPHC) diet and the involvement of adrenergic stimulation in this process. Male rats (~100 g) were submitted to LPHC (6 %-protein; 74 %-carbohydrate) or control (C; 17 %-protein; 63 %-carbohydrate) isocaloric diets for 15 days. The IBAT temperature was evaluated in the rats before and after the administration of noradrenaline (NA) (20 µg 100 g b w−1 min−1). The expression levels of uncoupling protein 1 (UCP1) and other proteins involved in the regulation of UCP1 expression were determined by Western blot (Student’s t test, P ≤ 0.05). The LPHC diet promoted a 1.1 °C increase in the basal temperature of IBAT when compared with the basal temperature in the IBAT of the C group. NA administration promoted a 0.3 °C increase in basal temperature in the IBAT of the C rats and a 0.5 °C increase in the IBAT of the LPHC group. The level of UCP1 increased 60 % in the IBAT of LPHC-fed rats, and among the proteins involved in its expression, such as β3-AR and α1-AR, there was a 40 % increase in the levels of p38-MAPK and a 30 % decrease in CREB when compared to the C rats. The higher sympathetic flux to IBAT, which is a consequence of the administration of the LPHC diet to rats, activates thermogenesis and increases the expression of UCP1 in the tissue. Our results suggest that the increase in UCP1 content may occur via p38 MAPK and ATF2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700