Influence of silver nanoparticle addition, porosity, and processing technique on the mechanical properties of Ba0.3Co4Sb12 skutterudites
详细信息    查看全文
文摘
The thermoelectric skutterudite Ba0.3Co4Sb12 is a promising candidate for waste heat recovery applications. Recently, it was demonstrated that the addition of silver nanoparticles (AgNP) to Ba0.3Co4Sb12 increases both the thermoelectric figure of merit and electrical conductivity. This study is the first to examine the effect of AgNP addition on the material’s mechanical properties. This study also found that the Young’s modulus, E, shear modulus, G, and bulk modulus, B, decreased linearly with increasing volume fraction porosity, P. Resonant ultrasound spectroscopy was employed to measure the elastic moduli, and Vickers indentation was used to determine the hardness, H, and fracture toughness, K C. Trends in the mechanical properties as a function of grain size, porosity, and the AgNP are discussed in terms of the pertinent literature. While K C was independent of AgNP addition, porosity, and grain size, both E and H decreased linearly with increasing porosity. In addition, this study is the first to identify (i) the Ag3Sb phase formed and (ii) the enhanced densification that occurs when the AgNP is sintered with Ba0.3Co4Sb12 powders, where both effects are consistent with the eutectic and peritectic reactions observed in the binary phase diagram Ag–Sb. These eutectic/peritectic reactions may also be linked to the enhancement of electrical conductivity previously observed when Ag is added to Ba0.3Co4Sb12. Also, similar beneficial eutectic/peritectic reactions may be available for other systems where conductive particles are added to other antimonides or other thermoelectric systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700