A novel cyclic RGD-containing peptide polymer improves serum-free adhesion of adipose tissue-derived mesenchymal stem cells to bone implant surfaces
详细信息    查看全文
  • 作者:Péter Tátrai (1) (2)
    Bernadett Sági (3)
    Anna Szigeti (4)
    áron Szepesi (4)
    Ildikó Szabó (5)
    Szilvia B?sze (5)
    Zoltán Kristóf (6)
    Károly Markó (7)
    Gergely Szakács (1)
    István Urbán (8)
    Gábor Mez? (5)
    Ferenc Uher (3)
    Katalin Német (2) (4)
  • 刊名:Journal of Materials Science Materials in Medicine
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:24
  • 期:2
  • 页码:479-488
  • 全文大小:1280KB
  • 参考文献:1. Morita Y, Yamasaki K, Hattori K. A feasibility study for in vitro evaluation of fixation between prosthesis and bone with bone marrow-derived mesenchymal stem cells. Clin Biomech. (Bristol, Avon) 2010;25:829-4.
    2. van den Dolder J, Farber E, Spauwen PH, Jansen JA. Bone tissue reconstruction using titanium fiber mesh combined with rat bone marrow stromal cells. Biomaterials. 2003;24:1745-0. p://dx.doi.org/10.1016/S0142-9612(02)00537-9">CrossRef
    3. Holtorf HL, Jansen JA, Mikos AG. Ectopic bone formation in rat marrow stromal cell/titanium fiber mesh scaffold constructs: effect of initial cell phenotype. Biomaterials. 2005;26:6208-6. p://dx.doi.org/10.1016/j.biomaterials.2005.04.006">CrossRef
    4. Zhou W, Han C, Song Y, Yan X, Li D, Chai Z, et al. The performance of bone marrow mesenchymal stem cell-implant complexes prepared by cell sheet engineering techniques. Biomaterials. 2010;31:3212-1. p://dx.doi.org/10.1016/j.biomaterials.2010.01.036">CrossRef
    5. Mylonas D, Vidal MD, De Kok IJ, Moriarity JD, Cooper LF. Investigation of a thermoplastic polymeric carrier for bone tissue engineering using allogeneic mesenchymal stem cells in granular scaffolds. J Prosthodont. 2007;16:421-0. p://dx.doi.org/10.1111/j.1532-849X.2007.00218.x">CrossRef
    6. Rickert D, Sauerbier S, Nagursky H, Menne D, Vissink A, Raghoebar GM. Maxillary sinus floor elevation with bovine bone mineral combined with either autogenous bone or autogenous stem cells: a prospective randomized clinical trial. Clin Oral Implants Res. 2011;22:251-. p://dx.doi.org/10.1111/j.1600-0501.2010.01981.x">CrossRef
    7. Choi HJ, Kim JM, Kwon E, Che JH, Lee JI, Cho SR, et al. Establishment of efficacy and safety assessment of human adipose tissue-derived mesenchymal stem cells (hATMSCs) in a nude rat femoral segmental defect model. J Korean Med Sci. 2011;26:482-1. p://dx.doi.org/10.3346/jkms.2011.26.4.482">CrossRef
    8. Levi B, Longaker MT. Concise review: adipose-derived stromal cells for skeletal regenerative medicine. Stem Cells. 2011;29:576-2. p://dx.doi.org/10.1002/stem.612">CrossRef
    9. Scherberich A, Müller AM, Sch?fer DJ, Banfi A, Martin I. Adipose tissue-derived progenitors for engineering osteogenic and vasculogenic grafts. J Cell Physiol. 2010;225:348-3. p://dx.doi.org/10.1002/jcp.22313">CrossRef
    10. Gastaldi G, Asti A, Scaffino MF, Visai L, Saino E, Cometa AM, et al. Human adipose-derived stem cells (hASCs) proliferate and differentiate in osteoblast-like cells on trabecular titanium scaffolds. J Biomed Mater Res A. 2010;94:790-.
    11. Marino G, Rosso F, Cafiero G, Tortora C, Moraci M, Barbarisi M, et al. Beta-tricalcium phosphate 3D scaffold promote alone osteogenic differentiation of human adipose stem cells: in vitro study. J Mater Sci Mater Med. 2010;21:353-3. p://dx.doi.org/10.1007/s10856-009-3840-z">CrossRef
    12. Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24:4385-15. p://dx.doi.org/10.1016/S0142-9612(03)00343-0">CrossRef
    13. Porté-Durrieu MC, Guillemot F, Pallu S, Labrugère C, Brouillaud B, Bareille R, et al. Cyclo-(DfKRG) peptide grafting onto Ti-6Al-4V: physical characterization and interest towards human osteoprogenitor cells adhesion. Biomaterials. 2004;25:4837-6. p://dx.doi.org/10.1016/j.biomaterials.2003.11.037">CrossRef
    14. Sawyer AA, Weeks DM, Kelpke SS, McCracken MS, Bellis SL. The effect of the addition of a polyglutamate motif to RGD on peptide tethering to hydroxyapatite and the promotion of mesenchymal stem cell adhesion. Biomaterials. 2005;26:7046-6. p://dx.doi.org/10.1016/j.biomaterials.2005.05.006">CrossRef
    15. Chua PH, Neoh KG, Kang ET, Wang W. Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials. 2008;29:1412-1. p://dx.doi.org/10.1016/j.biomaterials.2007.12.019">CrossRef
    16. Detsch R, Dieser I, Deisinger U, Uhl F, Hamisch S, Ziegler G, et al. Biofunctionalization of dispense-plotted hydroxyapatite scaffolds with peptides: quantification and cellular response. J Biomed Mater Res A. 2010;92:493-03.
    17. Markó K, Ligeti M, Mezo G, Mihala N, Kutnyánszky E, Kiss E, et al. A novel synthetic peptide polymer with cyclic RGD motifs supports serum-free attachment of anchorage-dependent cells. Bioconjug Chem. 2008;19:1757-6. p://dx.doi.org/10.1021/bc8000134">CrossRef
    18. Mez? G, Kajtár J, Nagy I, Szekerke M, Hudecz F. Carrier design: synthesis and conformational studies of poly(pan class="a-plus-plus emphasis type-small-caps">l -lysine)based branched polypeptides with hydroxyl groups in the side chains. Biopolymers. 1997;42:719-0. p://dx.doi.org/10.1002/(SICI)1097-0282(199711)42:6<719::AID-BIP9>3.0.CO;2-X">CrossRef
    19. Mez? G, de Oliveira E, Krikorian D, Feijlbrief M, Jakab A, Tsikaris V, et al. Synthesis and comparison of antibody recognition of conjugates containing herpes simplex virus type 1 glycoprotein D epitope VII. Bioconjug Chem. 2003;14:1260-. p://dx.doi.org/10.1021/bc0341122">CrossRef
    20. Gurrath M, Müller G, Kessler H, Aumailley M, Timpl R. Conformation/activity studies of rationally designed potent anti-adhesive RGD peptides. Eur J Biochem. 1992;210:911-1. p://dx.doi.org/10.1111/j.1432-1033.1992.tb17495.x">CrossRef
    21. Lavenus S, Pilet P, Guicheux J, Weiss P, Louarn G, Layrolle P. Behaviour of mesenchymal stem cells, fibroblasts and osteoblasts on smooth surfaces. Acta Biomater. 2011;7:1525-4. p://dx.doi.org/10.1016/j.actbio.2010.12.033">CrossRef
    22. Wiedmann-Al-Ahmad M, Gutwald R, Gellrich NC, Hübner U, Schmelzeisen R. Search for ideal biomaterials to cultivate human osteoblast-like cells for reconstructive surgery. J Mater Sci Mater Med. 2005;16:57-6. p://dx.doi.org/10.1007/s10856-005-6447-z">CrossRef
    23. Herten M, Rothamel D, Schwarz F, Friesen K, Koegler G, Becker J. Surface- and nonsurface-dependent in vitro effects of bone substitutes on cell viability. Clin Oral Investig. 2009;13:149-5. p://dx.doi.org/10.1007/s00784-008-0214-8">CrossRef
    24. Jafarian M, Eslaminejad MB, Khojasteh A, Abbas FM, Dehghan MM, Hassanizadeh R. Marrow-derived mesenchymal stem cells-directed bone regeneration in the dog mandible: a comparison between biphasic calcium phosphate and natural bone mineral. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105:e14-4.
    25. Yang C, Cheng K, Weng W, Yang C. Immobilization of RGD peptide on HA coating through a chemical bonding approach. J Mater Sci Mater Med. 2009;20:2349-2. p://dx.doi.org/10.1007/s10856-009-3794-1">CrossRef
    26. Oya K, Tanaka Y, Saito H, Kurashima K, Nogi K, Tsutsumi H, et al. Calcification by MC3T3-E1 cells on RGD peptide immobilized on titanium through electrodeposited PEG. Biomaterials. 2009;30:1281-. p://dx.doi.org/10.1016/j.biomaterials.2008.11.030">CrossRef
    27. Durrieu MC, Pallu S, Guillemot F, Bareille R, Amédée J, Baquey CH, et al. Grafting RGD containing peptides onto hydroxyapatite to promote osteoblastic cells adhesion. J Mater Sci Mater Med. 2004;15:779-6. p://dx.doi.org/10.1023/B:JMSM.0000032818.09569.d9">CrossRef
    28. Hennessy KM, Clem WC, Phipps MC, Sawyer AA, Shaikh FM, Bellis SL. The effect of RGD peptides on osseointegration of hydroxyapatite biomaterials. Biomaterials. 2008;29:3075-3. p://dx.doi.org/10.1016/j.biomaterials.2008.04.014">CrossRef
    29. Galli D, Benedetti L, Bongio M, Maliardi V, Silvani G, Ceccarelli G, et al. In vitro osteoblastic differentiation of human mesenchymal stem cells and human dental pulp stem cells on poly-pan class="a-plus-plus emphasis type-small-caps">l -lysine-treated titanium-6-aluminium-4-vanadium. J Biomed Mater Res A. 2011;97:118-6.
    30. Subbiahdoss G, Pidhatika B, Coullerez G, Charnley M, Kuijer R, van der Mei HC, et al. Bacterial biofilm formation versus mammalian cell growth on titanium-based mono- and bi-functional coating. Eur Cell Mater. 2010;19:205-3.
    31. Germanier Y, Tosatti S, Broggini N, Textor M, Buser D. Enhanced bone apposition around biofunctionalized sandblasted and acid-etched titanium implant surfaces. A histomorphometric study in miniature pigs. Clin Oral Implants Res. 2006;17:251-. p://dx.doi.org/10.1111/j.1600-0501.2005.01222.x">CrossRef
    32. Schliephake H, Scharnweber D, Dard M, Sewing A, Aref A, Roessler S. Functionalization of dental implant surfaces using adhesion molecules. J Biomed Mater Res B Appl Biomater. 2005;73:88-6.
    33. Stadlinger B, Pilling E, Huhle M, Khavkin E, Bierbaum S, Scharnweber D, et al. Suitability of differently designed matrix-based implant surface coatings: an animal study on bone formation. J Biomed Mater Res B Appl Biomater. 2008;87:516-4.
    34. Ferris DM, Moodie GD, Dimond PM, Gioranni CW, Ehrlich MG, Valentini RF. RGD-coated titanium implants stimulate increased bone formation in vivo. Biomaterials. 1999;20:2323-1. p://dx.doi.org/10.1016/S0142-9612(99)00161-1">CrossRef
    35. Schliephake H, Scharnweber D, Dard M, R?ssler S, Sewing A, Meyer J, Hoogestraat D. Effect of RGD peptide coating of titanium implants on periimplant bone formation in the alveolar crest. An experimental pilot study in dogs. Clin Oral Implants Res. 2002;13:312-. p://dx.doi.org/10.1034/j.1600-0501.2002.130312.x">CrossRef
    36. Elmengaard B, Bechtold JE, S?balle K. In vivo study of the effect of RGD treatment on bone ongrowth on press-fit titanium alloy implants. Biomaterials. 2005;26:3521-. p://dx.doi.org/10.1016/j.biomaterials.2004.09.039">CrossRef
    37. Rammelt S, Illert T, Bierbaum S, Scharnweber D, Zwipp H, Schneiders W. Coating of titanium implants with collagen: RGD peptide and chondroitin sulfate. Biomaterials. 2006;27:5561-1. p://dx.doi.org/10.1016/j.biomaterials.2006.06.034">CrossRef
    38. Pallu S, Fricain JC, Bareille R, Bourget C, Dard M, Sewing A, et al. Cyclo-DfKRG peptide modulates in vitro and in vivo behavior of human osteoprogenitor cells on titanium alloys. Acta Biomater. 2009;5:3581-2. p://dx.doi.org/10.1016/j.actbio.2009.05.018">CrossRef
    39. Schneider D, Weber FE, H?mmerle CH, Feloutzis A, Jung RE. Bone regeneration using a synthetic matrix containing enamel matrix derivate. Clin Oral Implants Res. 2011;22:214-2. p://dx.doi.org/10.1111/j.1600-0501.2010.01985.x">CrossRef
  • 作者单位:Péter Tátrai (1) (2)
    Bernadett Sági (3)
    Anna Szigeti (4)
    áron Szepesi (4)
    Ildikó Szabó (5)
    Szilvia B?sze (5)
    Zoltán Kristóf (6)
    Károly Markó (7)
    Gergely Szakács (1)
    István Urbán (8)
    Gábor Mez? (5)
    Ferenc Uher (3)
    Katalin Német (2) (4)

    1. Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
    2. Department of Experimental Gene Therapy, National Blood Transfusion Service, Diószegi út 64, Budapest, 1113, Hungary
    3. Stem Cell Laboratory, National Blood Transfusion Service, Budapest, Hungary
    4. Creative Cell Ltd, Budapest, Hungary
    5. Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Budapest, Hungary
    6. Department of Plant Anatomy, E?tv?s Loránd University, Budapest, Hungary
    7. Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
    8. Department of Restorative Dentistry, Loma Linda University, Loma Linda, CA, USA
  • ISSN:1573-4838
文摘
Seeding of bone implants with mesenchymal stem cells (MSCs) may promote osseointegration and bone regeneration. However, implant material surfaces, such as titanium or bovine bone mineral, fail to support rapid and efficient attachment of MSCs, especially under serum-free conditions that may be desirable when human applications or tightly controlled experiments are envisioned. Here we demonstrate that a branched poly[Lys(Seri-DL-Alam)] polymer functionalized with cyclic arginyl-glycyl-aspartate, when immobilized by simple adsorption to tissue culture plastic, surgical titanium alloy (Ti6Al4V), or Bio-Oss? bovine bone substitute, significantly accelerates serum-free adhesion and enhances seeding efficiency of human adipose tissue-derived MSCs. Moreover, when exposed to serum-containing osteogenic medium, MSCs survived and differentiated on the peptide-coated scaffolds. In summary, the presented novel polypeptide conjugate can be conveniently used for coating various surfaces, and may find applications whenever quick and efficient seeding of MSCs is required to various scaffolds in the absence of serum.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700