New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation
详细信息    查看全文
  • 作者:Adam F. Kowalski ; S. L. Hawley ; M. Carlsson ; J. C. Allred ; H. Uitenbroek
  • 关键词:Flares ; dynamics ; Flares ; energetic particles ; Flares ; impulsive phase ; Flares ; models ; Flares ; spectrum ; Flares ; white ; light
  • 刊名:Solar Physics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:290
  • 期:12
  • 页码:3487-3523
  • 全文大小:2,082 KB
  • 参考文献:Abbett, W.P., Hawley, S.L.: 1999, Dynamic models of optical emission in impulsive solar flares. Astrophys. J. 521, 906. DOI . ADS
    Aller, L.H.: 1963, Astrophysics. The Atmospheres of the Sun and Stars, 2nd edn. Ronald Press, New York.
    Allred, J.C., Hawley, S.L., Abbett, W.P., Carlsson, M.: 2005, Radiative hydrodynamic models of the optical and ultraviolet emission from solar flares. Astrophys. J. 630, 573. DOI . ADS
    Allred, J.C., Hawley, S.L., Abbett, W.P., Carlsson, M.: 2006, Radiative hydrodynamic models of optical and ultraviolet emission from M dwarf flares. Astrophys. J. 644, 484. DOI . ADS
    Allred, J.C., Kowalski, A.F., Carlsson, M.: 2015, submitted, A unified computational model for solar and stellar flares. Astrophys. J.
    Aschwanden, M.J., Kliem, B., Schwarz, U., Kurths, J., Dennis, B.R., Schwartz, R.A.: 1998, Wavelet analysis of solar flare hard X-rays. Astrophys. J. 505, 941. DOI . ADS
    Avrett, E.H., Machado, M.E., Kurucz, R.L.: 1986, Chromospheric flare models. In: Neidig, D.F. (ed.) The Lower Atmosphere of Solar Flares, National Solar Observatory, 216.
    Bengtson, R.D.: 1996, private communication.
    Bengtson, R.D., Tannich, J.D., Kepple, P.: 1970, Comparison between measured and theoretical Stark
    oadened profiles of \(\mbox{H}_{6}\,\mbox{--}\,\mbox{H}_{12}\) emitted from a low-density plasma. Phys. Rev. A 1, 532. DOI . ADS
    Brown, J.C.: 1971, The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of hard X-ray bursts. Solar Phys. 18, 489. DOI . ADS
    Carlsson, M.: 1998, Radiative transfer and radiation hydrodynamics. In: Vial, J.C., Bocchialini, K., Boumier, P. (eds.) Space Solar Physics: Theoretical and Observational Issues in the Context of the SOHO Mission, Lecture Notes in Physics 507, Springer, Berlin, 163. DOI .
    Carlsson, M., Rutten, R.J.: 1992, Solar hydrogen lines in the infrared. Astron. Astrophys. 259, L53. ADS
    Carlsson, M., Stein, R.F.: 1992, Non-LTE radiating acoustic shocks and CA II K2V bright points. Astrophys. J. Lett. 397, L59. DOI . ADS
    Carlsson, M., Stein, R.F.: 1994, Radiation shock dynamics in the solar chromosphere -Results of numerical simulations. In: Carlsson, M. (ed.) Chromospheric Dynamics, University of Oslo, Oslo, 47.
    Carlsson, M., Stein, R.F.: 1995, Does a nonmagnetic solar chromosphere exist? Astrophys. J. Lett. 440, L29. DOI . ADS
    Carlsson, M., Stein, R.F.: 1997, Formation of solar calcium H and K bright grains. Astrophys. J. 481, 500. DOI . ADS
    Carlsson, M., Stein, R.F.: 2002, Dynamic hydrogen ionization. Astrophys. J. 572, 626. DOI . ADS
    Christian, D.J., Mathioudakis, M., Jevremovi?, D., Dupuis, J., Vennes, S., Kawka, A.: 2003, The extreme-ultraviolet continuum of a strong stellar flare. Astrophys. J. Lett. 593, L105. DOI . ADS
    Cram, L.E., Woods, D.T.: 1982, Models for stellar flares. Astrophys. J. 257, 269. DOI . ADS
    Dalgarno, A., Griffing, G.W.: 1958, Energy per ion pair for electron and proton beams in atomic hydrogen. Proc. Roy. Soc. London Ser. A 248, 415. DOI . ADS
    Dappen, W., Anderson, L., Mihalas, D.: 1987, Statistical mechanics of partially ionized stellar plasma -The Planck–Larkin partition function, polarization shifts, and simulations of optical spectra. Astrophys. J. 319, 195. DOI . ADS
    Dennis, B.R., Zarro, D.M.: 1993, The Neupert effect -What can it tell us about the impulsive and gradual phases of solar flares? Solar Phys. 146, 177. DOI . ADS
    Dere, K.P., Landi, E., Mason, H.E., Monsignori Fossi, B.C., Young, P.R.: 1997, CHIANTI -An atomic database for emission lines. Astron. Astrophys. Suppl. 125, 149. DOI . ADS
    Donati-Falchi, A., Falciani, R., Smaldone, L.A.: 1985, Analysis of the optical spectra of solar flares. IV. The ‘blue-continuum of white light flares. Astron. Astrophys. 152, 165. ADS
    Donati-Falchi, A., Smaldone, L.A., Falciani, R.: 1984, Analysis of the optical spectra of solar flares. II. The energetics of the June 4, 1980 white light flare. Astron. Astrophys. 131, 256. ADS
    Dorfi, E.A., Drury, L.O.: 1987, Simple adaptive grids for 1-D initial value problems. J. Comput. Phys. 69, 175. DOI . ADS MATH
    Doyle, J.G., Butler, C.J., Bryne, P.B., van den Oord, G.H.J.: 1988, Rotational modulation and flares on RS CVn and BY DRA systems. Astron. Astrophys. 193, 229. ADS
    Drake, S.A., Ulrich, R.K.: 1980, The emission-line spectrum from a slab of hydrogen at moderate to high densities. Astrophys. J. Suppl. Ser. 42, 351. DOI . ADS
    Eason, E.L.E., Giampapa, M.S., Radick, R.R., Worden, S.P., Hege, E.K.: 1992, Spectroscopic and photometric observations of a five-magnitude flare event on UV Ceti. Astron. J. 104, 1161. DOI . ADS
    Emslie, A.G.: 1978, The collisional interaction of a beam of charged particles with a hydrogen target of arbitrary ionization level. Astrophys. J. 224, 241. DOI . ADS
    Fang, C., Hénoux, J.C., Gan, W.Q.: 1993, Diagnostics of non-thermal processe
  • 作者单位:Adam F. Kowalski (1) (2)
    S. L. Hawley (3)
    M. Carlsson (4)
    J. C. Allred (2)
    H. Uitenbroek (5)
    R. A. Osten (6)
    G. Holman (2)

    1. Department of Astronomy, University of Maryland, College Park, MD, 20742, USA
    2. NASA Goddard Space Flight Center, Heliophysics Science Division, Code 671, 8800 Greenbelt Rd., Greenbelt, MD, 20771, USA
    3. Department of Astronomy, University of Washington, Box 351580, Seattle, WA, 98195, USA
    4. Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, 0315, Oslo, Norway
    5. National Solar Observatory, Sacramento Peak, P.O. Box 62, Sunpsot, NM, 88349, USA
    6. Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218, USA
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Astronomy
    Extraterrestrial Physics and Space Sciences
    Astrophysics
  • 出版者:Springer Netherlands
  • ISSN:1573-093X
文摘
The heating mechanism at high densities during M-dwarf flares is poorly understood. Spectra of M-dwarf flares in the optical and near-ultraviolet wavelength regimes have revealed three continuum components during the impulsive phase: 1) an energetically dominant blackbody component with a color temperature of \(T\approx10^{4}~\mbox{K}\) in the blue-optical, 2) a smaller amount of Balmer continuum emission in the near-ultraviolet at \(\lambda\le3\,646\) ?, and 3) an apparent pseudo-continuum of blended high-order Balmer lines between \(\lambda=3\,646\) ? and \(\lambda\approx3\,900\) ?. These properties are not reproduced by models that employ a typical “solar-type-flare heating level of \({\le}\,10^{11}~\mbox{erg}\,\mbox{cm}^{-2}\,\mbox{s}^{-1}\) in nonthermal electrons, and therefore our understanding of these spectra is limited to a phenomenological three-component interpretation. We present a new 1D radiative-hydrodynamic model of an M-dwarf flare from precipitating nonthermal electrons with a high energy flux of \(10^{13}~\mbox{erg}\,\mbox{cm}^{-2}\,\mbox{s}^{-1}\). The simulation produces bright near-ultraviolet and optical continuum emission from a dense (\(n>10^{15}~\mbox{cm}^{-3}\)), hot (\(T \approx12\,000\,\mbox{--}\,13\,500~\mbox{K}\)) chromospheric condensation. For the first time, the observed color temperature and Balmer jump ratio are produced self-consistently in a radiative-hydrodynamic flare model. We find that a \(T\approx10^{4}~\mbox{K}\) blackbody-like continuum component and a low Balmer jump ratio result from optically thick Balmer (\(\infty\rightarrow n=2\)) and Paschen recombination (\(\infty\rightarrow n=3\)) radiation, and thus the properties of the flux spectrum are caused by blue (\(\lambda\approx4\,300\) ?) light escaping over a larger physical depth range than by red (\(\lambda\approx6\,700\) ?) and near-ultraviolet (\(\lambda\approx3\,500\) ?) light. To model the near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer lines, we include the extra Balmer continuum opacity from Landau–Zener transitions that result from merged, high-order energy levels of hydrogen in a dense, partially ionized atmosphere. This reveals a new diagnostic of ambient charge density in the densest regions of the atmosphere that are heated during dMe and solar flares. Keywords Flares, dynamics Flares, energetic particles Flares, impulsive phase Flares, models Flares, spectrum Flares, white-light

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700