Noise reduction using wavelet cycle spinning: analysis of useful periodicities in the z-transform domain
详细信息    查看全文
  • 作者:Miguel A. Rodriguez-Hernandez ; José L. San Emeterio
  • 关键词:Wavelets ; Cycle spinning ; Periodicities ; Signal denoising ; Ultrasonics ; Z ; transform
  • 刊名:Signal, Image and Video Processing
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:10
  • 期:3
  • 页码:519-526
  • 全文大小:564 KB
  • 参考文献:1.Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)CrossRef MATH
    2.Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, New York (1999)MATH
    3.Kovacevic, J., Goyal, V.K., Vetterli, M.: Signal Processing Fourier and Wavelet Representations. http://​www.​fourierandwavele​ts.​org/​SPFWR_​a3.​1_​2012.​pdf (2012)
    4.Burrus, C.S., Gopinath, R.A., Guo, H.: Introduction to Wavelets and Wavelet Transforms. Prentice-Hall, New Jersey (1998)
    5.Kamilov, U., Bostan, E., Unser, M.: Wavelet shrinkage with consistent cycle spinning generalizes total variation denoising. IEEE Signal Process. Lett. 19(4), 187–190 (2012)CrossRef
    6.Kumar, B.K.S.: Image denoising based on non-local means filter and its method noise thresholding. Signal Image Video Process. 7, 1211–1227 (2013)CrossRef
    7.Rezazadeh, S., Coulombe, S.: A novel discrete wavelet transform framework for full reference image quality assessment. Signal Image Video Process. 7, 559–573 (2013)CrossRef
    8.Atto, A.M., Pastor, D., Mercier, G.: Wavelet shrinkage: unification of basic thresholding functions and thresholds. Signal Image Video Process. 5, 11–28 (2011)CrossRef
    9.Yektaii, M., Ahmad, M.O., Bhattacharya, P.: A method for preserving the classifiability of digital images after performing a wavelet-based compression. Signal Image Video Process. 8, 169–180 (2014)CrossRef
    10.Kanumuri, T., Dewal, M.L., Anand, R.S.: Progressive medical image coding using binary wavelet transforms. Signal Image Video Process. 8, 883–899 (2014)CrossRef
    11.Kubinyi, M., Kreibich, O., Neuzil, J., Smid, R.: EMAT noise suppression using information fusion in stationary wavelet packets. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1027–1036 (2011)CrossRef
    12.Abbate, A., Koay, J., Frankel, J., Schroeder, S.C., Das, P.: Signal detection and noise suppression using a wavelet transform signal processor: application to ultrasonic flaw detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 14–26 (1997)CrossRef
    13.Pardo, E., San Emeterio, J.L., Rodriguez, M.A., Ramos, A.: Noise reduction in ultrasonic NDT using undecimated wavelet transforms. Ultrasonics 44, e1063–e1067 (2006)CrossRef
    14.Pardo, E., Emeterio, J.L., Rodriguez, M.A., Ramos, A.: Shift invariant wavelet denoising of ultrasonic traces. Acta Acust. United Acust. 94, 685–693 (2008)CrossRef
    15.Shensa, M.J.: The discrete wavelet transform: wedding the a trous and Mallat algorithms. IEEE Trans. Signal Process. 40, 2464–2482 (1992)CrossRef MATH
    16.Coifman, R., Donoho, D.: Translation invariant de-noising. In: Antoniadis, A., Oppenheim, G. (eds.) Wavelets and Statistics, Lecture Notes in Statistics, pp. 125–150. Springer, Berlin (1995)
    17.Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 2, 674–693 (1989)CrossRef
    18.Beylkin, G., Coifman, R., Rokhlin, V.: Fast wavelet transforms and numerical algorithms. Commun. Pure Appl. Math. 44, 141–183 (1991)CrossRef MathSciNet MATH
    19.Beylkin, G.: On the representation of operators in bases of compactly supported wavelets. SIAM J. Numer. Anal. 6(6), 1716–1740 (1992)CrossRef MathSciNet
    20.Vaidyanathan, P.P.: Multirate Systems and Filter Banks. Prentice Hall, Englewood Cliffs (1992)
    21.Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425–455 (1994)CrossRef MathSciNet MATH
    22.Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90, 1200–1224 (1995)CrossRef MathSciNet MATH
    23.Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., Picard, D.: Wavelet shrinkage: Asymptotia? J. R. Stat. Soc. Ser. B 57, 301–369 (1995)MathSciNet MATH
    24.Karpur, P., Shankar, P.M., Rose, J.L., Newhouse, V.L.: Split spectrum processing: optimizing the processing parameters using minimization. Ultrasonics 25, 204–208 (1997)CrossRef
    25.Lazaro, J.C., San Emeterio, J.L., Ramos, A., Fernandez, J.L.: Influence of thresholding procedures in ultrasonic grain noise reduction using wavelets. Ultrasonics 40, 263–267 (2002)CrossRef
    26.Donoho, D.L.: De-noising by soft thresholding. IEEE Trans. Inf. Theory 41, 613–627 (1995)CrossRef MathSciNet MATH
    27.Johnstone, I.M., Silverman, B.W.: Wavelet threshold estimators for data with correlated noise. J. R. Stat. Soc. 59, 319–351 (1997)CrossRef MathSciNet MATH
  • 作者单位:Miguel A. Rodriguez-Hernandez (1)
    José L. San Emeterio (2)

    1. ITACA, Universitat Politécnica de Valéncia, Valencia, Spain
    2. Sensors and Ultrasonic Systems Department, ITEFI, CSIC, Madrid, Spain
  • 刊物类别:Engineering
  • 刊物主题:Signal,Image and Speech Processing
    Image Processing and Computer Vision
    Computer Imaging, Vision, Pattern Recognition and Graphics
    Multimedia Information Systems
  • 出版者:Springer London
  • ISSN:1863-1711
文摘
Cycle spinning (CS) and a’trous algorithms are different implementations of the undecimated wavelet transform (UWT). Both algorithms can be used for UWT and even though the resulting wavelet coefficients are different, they keep a correspondence. This paper describes an analysis of the CS algorithm performed in the z-transform domain, showing the similarities and differences with the a’trous implementation. CS generates more wavelet coefficients than a’trous, but the number of significative and different coefficients is the same in both cases because of the occurrence of a periodic repetition in CS coefficients. Mathematical expressions for the relationship between CS and a’trous coefficients and for CS coefficient periodicities are provided in the z-transform domain. In some wavelet denoising applications, periodicities (present in the coefficients of the CS procedure) can also be found in the performance measure of the processed signals. In particular, in ultrasonic CS denoising applications, periodicities have been appreciated in the signal-to-noise ratio (SNR) of the ultrasonic denoised signals. These periodicities can be used to optimize the number of CS coefficients for an efficient implementation. Two examples showing the periodicities in the SNR are included. A selection of several reduced sets of CS wavelet coefficients has been utilized in the examples, and the SNRs resulting after denoising are analyzed. Keywords Wavelets Cycle spinning Periodicities Signal denoising Ultrasonics Z-transform

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700