Trajectory tracking sliding mode control of underactuated AUVs
详细信息    查看全文
  • 作者:Taha Elmokadem ; Mohamed Zribi ; Kamal Youcef-Toumi
  • 关键词:Autonomous underwater vehicles ; AUV ; Underactuated ; Trajectory tracking ; Sliding mode control
  • 刊名:Nonlinear Dynamics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:84
  • 期:2
  • 页码:1079-1091
  • 全文大小:2,489 KB
  • 参考文献:1.Cristi, R., Papoulias, F.A., Healey, A.J.: Adaptive sliding mode control of autonomous underwater vehicles in the dive plane. IEEE J. Ocean. Eng. 15(3), 152–160 (1990)CrossRef
    2.Healey, A.J., Lienard, D.: Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J. Ocean. Eng. 18(3), 327–339 (1993)CrossRef
    3.Wichlund, K., Srdalen, O.J., Egeland, O.: Control properties of underactuated vehicles. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2, pp. 2009-2014. IEEE (1995)
    4.Aguiar, A.P., Hespanha, J.P.: Position tracking of underactuated vehicles. In: Proceedings of the 2003 American Control Conference, vol. 3, pp. 1988-1993. IEEE (2003)
    5.Wang, L., Jia, H.m., Zhang, L.j., Wang, H.b.: Horizontal tracking control for AUV based on nonlinear sliding mode. In: International Conference on Information and Automation (ICIA), pp. 460-463. IEEE (2012)
    6.Ashrafiuon, H., Muske, K.R., McNinch, L.C., Soltan, R.A.: Sliding-mode tracking control of surface vessels. IEEE Trans. Ind. Electron. 55(11), 4004–4012 (2008)CrossRef
    7.Yoerger, D.R., Slotine, J.J.: Robust trajectory control of underwater vehicles. IEEE J. Ocean. Eng. 10(4), 462–470 (1985)CrossRef
    8.Joe, H., Kim, M., Yu, S.C.: Second-order sliding mode controller for autonomous underwater vehicle in the presence of unknown disturbances. Nonlinear Dyn. 78(1), 183–196 (2014)CrossRef
    9.Sahu, B.K., Subudhi, B.: Adaptive tracking control of an autonomous underwater vehicle. Int. J. Autom. Comput. 11(3), 299–307 (2014)CrossRef
    10.McGann, C., Py, F., Rajan, K., Ryan, J.P., Henthorn, R.: Adaptive control for autonomous underwater vehicles. In: Proceedings of the 23rd national conference on Artificial intelligence-Volume 3, pp. 1319-1324 (2008)
    11.Antonelli, G., Caccavale, F., Chiaverini, S., Fusco, G.: A novel adaptive control law for underwater vehicles. IEEE Trans. Control Syst. Technol. 11(2), 221–232 (2003)CrossRef
    12.Do, K., Pan, J., Jiang, Z.: Robust and adaptive path following for underactuated autonomous underwater vehicles. Ocean Eng. 31(16), 1967–1997 (2004)CrossRef
    13.Li, J.H., Lee, P.M.: Design of an adaptive nonlinear controller for depth control of an autonomous underwater vehicle. Ocean Eng. 32(17), 2165–2181 (2005)
    14.Yuh, J.: Learning control for underwater robotic vehicles. IEEE Control Syst. Mag. 14(2), 39–46 (1994)CrossRef
    15.Peng, Z., Wang, D., Wang, H., Wang, W.: Distributed coordinated tracking of multiple autonomous underwater vehicles. Nonlinear Dyn. 78(2), 1261–1276 (2014)MathSciNet CrossRef MATH
    16.Wang, H., Wang, D., Peng, Z.: Adaptive dynamic surface control for cooperative path following of marine surface vehicles with input saturation. Nonlinear Dyn. 77(1–2), 107–117 (2014)MathSciNet CrossRef MATH
    17.Yuh, J.: A neural net controller for underwater robotic vehicles. IEEE J. Ocean. Eng. 15(3), 161–166 (1990)CrossRef
    18.Fujii, T., Ura, T.: Development of motion control system for AUV using neural nets. In: Proceedings of the (1990) Symposium on Autonomous Underwater Vehicle Technology, pp. 81-86. IEEE (1990)
    19.Khaled, N., Chalhoub, N.G.: A self-tuning guidance and control system for marine surface vessels. Nonlinear Dyn. 73(1–2), 897–906 (2013)CrossRef
    20.Wang, J.S., Lee, C.G.: Self-adaptive recurrent neuro-fuzzy control of an autonomous underwater vehicle. IEEE Trans. Robot. Autom. 19(2), 283–295 (2003)CrossRef
    21.Lefeber, E., Pettersen, K.Y., Nijmeijer, H.: Tracking control of an underactuated ship. IEEE Trans. Control Syst. Technol. 11(1), 52–61 (2003)CrossRef
    22.Pettersen, K.Y., Nijmeijer, H.: Underactuated ship tracking control: theory and experiments. Int. J. Control 74(14), 1435–1446 (2001)MathSciNet CrossRef MATH
    23.Jiang, Z.P.: Global tracking control of underactuated ships by Lyapunov’s direct method. Automatica 38(2), 301–309 (2002)CrossRef MATH
    24.Fossen, T.I.: Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley, New York (2011)CrossRef
    25.Fossen, T.I.: Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics, Trondheim (2002)
    26.Yu, R., Zhu, Q., Xia, G., Liu, Z.: Sliding mode tracking control of an underactuated surface vessel. IET Control Theory Appl. 6(3), 461–466 (2012)MathSciNet CrossRef
    27.Martins, F.N., Celeste, W.C., Carelli, R., Sarcinelli Filho, M., Bastos-Filho, T.F.: An adaptive dynamic controller for autonomous mobile robot trajectory tracking. Control Eng. Pract. 16(11), 1354–1363 (2008)CrossRef
  • 作者单位:Taha Elmokadem (1)
    Mohamed Zribi (1)
    Kamal Youcef-Toumi (2)

    1. Electrical Engineering Department, Kuwait University, P.O. Box 5969, 13060, Safat, Kuwait
    2. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Mechanics
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-269X
文摘
This paper deals with the control of underactuated autonomous underwater vehicles (AUVs). AUVs are needed in many applications such as the exploration of oceans, scientific and military missions, etc. There are many challenges in the control of AUVs due to the complexity of the AUV model, the unmodelled dynamics, the uncertainties and the environmental disturbances. A trajectory tracking control scheme is proposed in this paper; this control scheme is designed using the sliding mode control technique in order to be robust against bounded disturbances. The control performance of an example AUV, using the proposed method, is evaluated through computer simulations. These simulation studies, which consider different reference trajectories, show that the proposed control scheme is robust under bounded disturbances.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700