Formation Control and Tracking for Co-operative Robots with Non-holonomic Constraints
详细信息    查看全文
  • 作者:Muhammad Umer Khan ; Shuai Li ; Qixin Wang…
  • 关键词:Non ; holonomic systems ; Consensus ; Formation control
  • 刊名:Journal of Intelligent and Robotic Systems
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:82
  • 期:1
  • 页码:163-174
  • 全文大小:736 KB
  • 参考文献:1.Astolfi, A.: Discontinuous control of nonholonomic systems. Syst. Control Lett. 27, 37–45 (1996)MathSciNet CrossRef MATH
    2.Balch, T., Arkin, R.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)CrossRef
    3.Biglarbegian, M.: A novel robust leader-following control design for mobile robots. J. Intell. Robot. Syst. 71, 391–402 (2013)CrossRef
    4.Cao, Y., Yu, W., Ren, W., Chen, G.: An overview of recent progress in the study of distributed multi-agent coordination. IEEE Trans. Ind. Informat. 9(1), 427–438 (2013)CrossRef
    5.Cao, Y.C., Ren, W.: Optimal linear consensus algorithm: An LQR perspective. IEEE Trans. Syst. Man, Cybern. B 40, 819–830 (2010)CrossRef
    6.Consolini, L., Morbidi, F., Prattichizzo, D., Tosques, M.: On a class of hierarchical formations of unicycle and their internal dynamics. IEEE Trans. Autom. Control 57(4), 845–859 (2012)MathSciNet CrossRef
    7.Dimarogonas, D.V., Kyriakopoulos, K.J.: On the randezvous problem for multiple nonholonomic agents. IEEE Trans. Autom. Control 52(5), 916–922 (2007)MathSciNet CrossRef
    8.Dong, W., Farrell, J.A.: Co-operative control of multiple non-holonomic mobile agents. IEEE Trans. Autom. Control 53(6), 1434–1448 (2008)MathSciNet CrossRef
    9.Dong, W.J., Guo, Y., Farrell, J.A.: Formation control of non-holonomic mobile robots. In: Proceeding Amer. Control Conf., pp 5602–5607 (2006)
    10.Hausman, K., Mueller, J., Hariharan, A., Ayanian, N., Sukhatme, G.S.: Cooperative multi-robot control for target tracking with efficient switching of onboard sensing topologies. In: Proceeding IROS Workshop Taxonomies Interconnected Systems: Topology in Distributed Robotics (2014). http://​robotics.​usc.​edu/​publications/​896/​
    11.Huang, J., Farritor, S.M., Qadi, A., Goddard, S.: Localization and follow-the-leader control of a heterogeneous group of mobile robots. IEEE/ASME Trans. Mechatronics 11(2), 205–215 (2006)CrossRef
    12.Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)MathSciNet CrossRef
    13.Kazerooni, E.S., Khorasani, K.: An lmi approach to optimal consensus seeking in multi-agent systems. In: Proceeding Amer. Control Conf., pp 4519–4524 (2009)
    14.Khalil, H.: Nonlinear systems, 3rd edn. Prentice Hall (2001)
    15.Kim, Y.S., Mesbahi, M.: On maximizing the second smallest eigenvalue of a state-dependant graph laplacian. IEEE Trans. Autom. Control 51, 115–120 (2006)MathSciNet
    16.Kolmanovky, I., McClamroch, N.H.: Developments in nonholonomic control problems. IEEE Control Syst. Mag. 15(6), 20–36 (1995)CrossRef
    17.La, H.M., Lim, R., Sheng, W.: Multi-robot cooperative learning for predator avoidance. IEEE Trans. Control Syst. Technol. 23(1), 52–63 (2015)CrossRef
    18.Leonard, N., Fiorelli, E.: Virtual leaders, artificial potentials and coordianted control of groups. In: Proceeding IEEE Int. Conf. Decis. and Control, vol. 3, pp 2968–2973 (2001)
    19.Li, Z., Duan, Z., Chen, G., Huang, L.: Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Trans. Circuits Syst. 57(1), 213–224 (2010)MathSciNet CrossRef
    20.Lin, X., Stephen, B.: Fast linear iterations for distributed averaging. Syst. Control Lett. 53, 65–78 (2004)MathSciNet CrossRef MATH
    21.Lin, Z., Francis, B., Maggiore, M.: Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans. Autom. Control 50(1), 121–127 (2005)MathSciNet CrossRef
    22.Ma, C.Q., Li, T., Zhang, J.F.: Leader following consensus control for multi-agent systems under measurement noises. In: Proceeding World Congr. Int. Fed. Autom. Control, pp 1528–1533 (2008)
    23.Michael, N., Fink, J., Kumar, V.: Cooperative manipulation and transportation with aerial robots. Auton. Robot. 30(1), 73–86 (2011)CrossRef MATH
    24.Murray, R.M.: Recent research in cooperative control of multi-vehicle systems. ASME J. Dyn. Syst. Meas. Control 129(5), 571–583 (2007)CrossRef
    25.Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006)MathSciNet CrossRef
    26.Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)MathSciNet CrossRef
    27.Peng, Z., Wen, G., Rahmani, A., Yu, Y.: Leader-follower formation control of nonholonomic mobile robots based on a bioinspired neurodynamic based approach. Robot. Auton. Syst. 61(9), 988–996 (2013)CrossRef
    28.Qu, Z.: Cooperative control of dynamical systems: applications to autonomous vehicles. Springer (2009)
    29.Ren, W.: Multi-vehicle consensus with a time-varying reference state. Syst. Control Lett. 56, 474–483 (2007)MathSciNet CrossRef MATH
    30.Ren, W., Beard, R.W., Mclain, T.W.: Coordination variables and consensus building in multiple vehicle systems. In: Proceeding Block Island Workshop Cooperative Control, vol. 390 (2007)
    31.Roldão, V., Cunha, R., Cabecinhas, D., Silvestre, C., Oliveira, P.: A leader-following trajectory generator with application to quadrotor formation flight. Robot. Auton. Syst. 62, 1597–1609 (2014)CrossRef
    32.Saber, R.O., Murray, R.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)MathSciNet CrossRef
    33.Scardovi, L., Sepulchre, R.: Synchronization in network of identical linear systems. Automatica 45(11), 2557–2562 (2009)MathSciNet CrossRef MATH
    34.Schlanbusch, R., Kristiansen, R., Nicklasson, P.J.: Attitude reference generation for leader-follower formation with nadir pointing leader. In: Proceeding Amer. Control Conf (2010)
    35.Siciliano, B., Khatib, O. (eds.): Handbook of robotics. Springer (2008)
    36.Stipanovic, D.M., Inalhan, G., Teo, R., Tomlin, C.J.: Decentralized overallping control of a formation of unmanned aerial vehicles. Automatica 40(8), 1285–1296 (2004)MathSciNet CrossRef MATH
    37.Tanner, H., Pappas, G., Kumar, V.: Leader-to-formation stability. IEEE Trans. Robot. Autom. 20(3), 443–455 (2004)CrossRef
    38.Tian, Y., Sarkar, N.: Control of a mobile robot subject to wheel slip. J. Intell. Robot. Syst. 74, 915–929 (2014)CrossRef
    39.Tuna, S.E.: Synchronizing linear systems via partial-state coupling. Automatica 44(8), 2179–2184 (2008)MathSciNet CrossRef MATH
    40.Wang, P.K.C., Hadaegh, F.Y.: Coordination and control of multiple microspacecraft moving in formation. J. Astronaut Sci. 44(3), 315–355 (1996)
    41.Wang, Z., Gu, D.: Cooperative target tracking control of multiple robots. IEEE Trans. Ind. Electron. 59(8), 3232–3240 (2012)CrossRef
    42.Canudas de Witt, C., Khennouf, H.: Theory of robot control. Springer, London (1996)CrossRef
    43.Yamaguchi, H.: A distributed motion coordination of strategy for multiple non-holonomic mobile robots in co-operative hunting operations. Robot. Auton. Syst. 43(4), 257–282 (2003)CrossRef
    44.Yang, E., Gu, D.: Nonlinear formation-keeping and mooring control of multiple autonomous underwater vehicles. IEEE/ASME Trans. Mechatronics 12(2), 205–215 (2007)MathSciNet CrossRef
  • 作者单位:Muhammad Umer Khan (1) (2)
    Shuai Li (1)
    Qixin Wang (1)
    Zili Shao (1)

    1. Embedded Systems and CPS Laboratory, Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
    2. Department of Mechatronics Engineering, Air University, Islamabad, Pakistan
  • 刊物类别:Engineering
  • 刊物主题:Automation and Robotics
    Electronic and Computer Engineering
    Artificial Intelligence and Robotics
    Mechanical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1573-0409
文摘
This paper mainly addresses formation control problem of non-holonomic systems in an optimized manner. Instead of using linearization to solve this problem approximately, we designed control laws with guaranteed global convergence by leveraging nonlinear transformations. Under this nonlinear transformation, consensus of non-holonomic robots can be converted into a stabilization problem, to which optimal treatment applies. This concept is then extended to the formation control and tracking problem for a team of robots following leader-follower strategy. A trajectory generator prescribes the feasible motion of virtual reference robot, a decentralized control law is used for each robot to track the reference while maintaining the formation. The asymptotic convergence of follower robots to the position and orientation of the reference robot is ensured using the Lyapunov function which is also generated using chained form differential equations. In order to witness the efficacy of the scheme, simulations results are presented for Unicycle and Car-like robots.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700