Well-Balanced High Order 1D Schemes on Non-uniform Grids and Entropy Residuals
详细信息    查看全文
  • 作者:G. Puppo ; M. Semplice
  • 关键词:High order finite volumes ; Non ; uniform grids ; Entropy ; Well balancing ; 65M08 ; 76M12
  • 刊名:Journal of Scientific Computing
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:66
  • 期:3
  • 页码:1052-1076
  • 全文大小:1,290 KB
  • 参考文献:1.Audusse, E., Bouchut, F., Bristeau, M., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25, 2050–2065 (2004)CrossRef MathSciNet MATH
    2.Baeza, A., Mulet, P.: Adaptive mesh refinement techniques for high-order shock capturing schemes for multi-dimensional hydrodynamic simulations. Int. J. Numer. Methods Fluids 52(4), 455–471 (2006). doi:10.​1002/​fld.​1191 CrossRef MathSciNet MATH
    3.Bermudez, A., Vazquez, M.: Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids 23(8), 1049–1071 (1994)CrossRef MathSciNet MATH
    4.Bouchut, F.: Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. Frontiers in mathematics. Birkhäuser, Basel (2004). doi:10.​1007/​b93802 CrossRef
    5.Caleffi, V., Valiani, A.: A well-balanced, third-order-accurate RKDG scheme for SWE on curved boundary domains. Adv. Water Resour. 46, 31–45 (2012)CrossRef
    6.Castro, C., Toro, E., Käser, M.: ADER scheme on unstructured meshes for shallow water: simulation of tsunami waves. Geophys. J. Int. 189(3), 1505–1520 (2012)CrossRef
    7.Chertock, A., Kurganov, A.: A simple eulerian finite-volume method for compressible fluids in domains with moving boundaries. Commun. Math. Sci. 6(3), 531–556 (2008)CrossRef MathSciNet MATH
    8.ClawPack (and related software) homepage. http://​www.​clawpack.​com
    9.Coco, A., Russo, G., Semplice, M.: Adaptive mesh refinement for hyperbolic systems based on third-order Compact WENO reconstruction. J. Sci. Comput. (2015). doi: 10.​1007/​s10915-015-0038-z
    10.Dafermos, C.M.: Hyperbolic conservation laws in continuum physics Grundlehren der Mathematischen Wissenschaften, vol. 325, 3rd edn. Springer, Berlin (2010). doi:10.​1007/​978-3-642-04048-1
    11.Donat, R., Martí, M.C., Martínez-Gavara, A., Mulet, P.: Well-balanced adaptive mesh refinement for shallow water flows. J. Comput. Phys. 257, 937–953 (2014). doi:10.​1016/​j.​jcp.​2013.​09.​032 CrossRef MathSciNet
    12.Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227, 8209–8253 (2008)CrossRef MathSciNet MATH
    13.Fazio, R., LeVeque, R.: Moving-mesh methods for one-dimensional hyperbolic problems using ClawPack. Comput. Math. Appl. 45(1–3), 273–298 (2003)CrossRef MathSciNet MATH
    14.Fluent homepage. http://​www.​ansys.​com
    15.GEOClaw HomePage. http://​depts.​washington.​edu/​clawpack/​geoclaw/​
    16.George, D.L.: Adaptive finite volume methods with well-balanced Riemann solvers for modeling floods in rugged terrain: application to the Malpasset dam
    eak flood (France, 1959). Int. J. Numer. Methods Fluids 66(8), 1000–1018 (2011). doi:10.​1002/​fld.​2298 CrossRef MATH
    17.Gorsse, Y., Iollo, A., Telib, H., Weynans, L.: A simple second order Cartesian scheme for compressible Euler flows. J. Comput. Phys. 231(23), 7780–7794 (2012). doi:10.​1016/​j.​jcp.​2012.​07.​014 CrossRef MathSciNet MATH
    18.Harten, A., Hyman, J.: Self adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50(2), 235–269 (1983)CrossRef MathSciNet MATH
    19.Hernàndez-Dueñas, G., Smadar, K.: Shallow water flows in channels. J. Sci. Comput. 48, 190–208 (2011). doi:10.​1007/​s10915-010-9430-x CrossRef MathSciNet MATH
    20.Hu, Z., Greaves, D., Wu, G.: Numerical simulation of fluid flows using an unstructured finite volume method with adaptive tri-tree grids. Int. J. Numer. Methods Fluids 39(5), 403–440 (2002)CrossRef MathSciNet MATH
    21.Kurganov, A., Petrova, G.: A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5, 133–160 (2007)CrossRef MathSciNet MATH
    22.Lamby, P., Müller, S., Stiriba, Y.: Solution of shallow water equations using fully adaptive multiscale schemes. Int. J. Numer. Methods Fluids 49(4), 417–437 (2005)CrossRef MATH
    23.LeVeque, R.: Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146, 346–356 (1998)CrossRef MathSciNet MATH
    24.LeVeque, R.J.: Numerical methods for conservation laws, 2nd edn. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (1992). doi:10.​1007/​978-3-0348-8629-1
    25.Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws. M2AN Math. Model. Numer. Anal. 33(3), 547–571 (1999)CrossRef MathSciNet MATH
    26.Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22(2), 656–672 (2000)CrossRef MathSciNet MATH
    27.Liang, Q.: A structured but non-uniform Cartesian grid-based model for the shallow water equations. Int. J. Numer. Methods Fluids 66(5), 537–554 (2011)CrossRef MATH
    28.Liang, Q., Borthwick, A.: Adaptive quadtree simulation of shallow flows with wet-dry fronts over complex topography. Comput. Fluids 38(2), 221–234 (2009)CrossRef MathSciNet MATH
    29.Noelle, S., Pankratz, N., Puppo, G., Natvig, J.R.: Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys. 213(2), 474–499 (2006)CrossRef MathSciNet MATH
    30.Noelle, S., Xing, Y., Shu, C.W.: High-order well-balanced finite volume WENO schemes for shallow water equation with moving water. J. Comput. Phys. 213, 474–499 (2007)CrossRef MathSciNet
    31.Puppo, G.: Numerical entropy production for central schemes. SIAM J. Sci. Comput. 25(4), 1382–1415 (electronic) (2003/04). doi:10.​1137/​S106482750238671​2
    32.Puppo, G., Semplice, M.: Numerical entropy and adaptivity for finite volume schemes. Commun. Comput. Phys. 10(5), 1132–1160 (2011). doi:10.​4208/​cicp.​250909.​210111a MathSciNet
    33.Puppo, G., Semplice, M.: Finite volume schemes on 2d non-uniform grids. In: AIMS (ed.) Proceedings of “Fourteenth International Conference devoted to Theory, Numerics and Applications of Hyperbolic Problems” (HYP2012) (2014)
    34.Shen, C., Qiu, J.M., Christlieb, A.: Adaptive mesh refinement based on high order finite difference WENO scheme for multi-scale simulations. J. Comput. Phys. 230(10), 3780–3802 (2011)CrossRef MathSciNet MATH
    35.Shi, J., Hu, C., Shu, C.W.: A technique of treating negative weights in WENO schemes. J. Comput. Phys. 175(1), 108–127 (2002)CrossRef MATH
    36.Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations (Cetraro, 1997), Lecture Notes in Math., vol. 1697, pp. 325–432. Springer, Berlin (1998)
    37.Tang, H.: Solution of the shallow-water equations using an adaptive moving mesh method. Int. J. Numer. Methods Fluids 44(7), 789–810 (2004)CrossRef MATH
    38.Tanq, H., Tang, T.: Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws. SIAM J. Numer. Anal. 41(2), 487–515 (2003)CrossRef MathSciNet
    39.Vásquez-Cendón, M.: Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J. Comput. Phys. 148, 497–526 (1999)CrossRef MathSciNet
    40.Vignoli, G., Titarev, V., Toro, E.: ADER schemes for the shallow water equations in channel with irregular bottom elevation. J. Comput. Phys. 227(4), 2463–2480 (2008)CrossRef MathSciNet MATH
    41.Wang, J., Borthwick, A., Taylor, R.: Finite-volume-type vof method on dynamically adaptive quadtree grids. Int. J. Numer. Methods Fluids 45(5), 485–508 (2004)CrossRef MATH
    42.Wang, R., Feng, H., Spiteri, R.J.: Observations on the fifth-order WENO method with non-uniform meshes. Appl. Math. Comput. 196(1), 433–447 (2008)CrossRef MathSciNet MATH
    43.Xing, Y.: Exactly well-balanced discontinuous Galerkin methods for the shallow water equations with moving water equilibrium. J. Comput. Phys. 257(PA), 536–553 (2013)
    44.Xing, Y., Shu, C.W.: High order finite difference WENO schemes with the exact conservation property for the shallow water equations. J. Comput. Phys. 208, 206–227 (2005)CrossRef MathSciNet MATH
    45.Xing, Y., Shu, C.W.: High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. J. Comput. Phys. 214(2), 567–598 (2006)CrossRef MathSciNet MATH
  • 作者单位:G. Puppo (1)
    M. Semplice (2)

    1. Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, Via Valleggio, 11, 22100, Como, Italy
    2. Dipartimento di Matematica “G. Peano”, Università di Torino, Via C. Alberto, 10, 10123, Turin, Italy
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Algorithms
    Computational Mathematics and Numerical Analysis
    Applied Mathematics and Computational Methods of Engineering
    Mathematical and Computational Physics
  • 出版者:Springer Netherlands
  • ISSN:1573-7691
文摘
This paper is concerned with the construction of high order schemes on irregular grids for balance laws, including a discussion of an a-posteriori error indicator based on the numerical entropy production. We also impose well-balancing on non uniform grids for the shallow water equations, which can be extended similarly to other balance laws, obtaining schemes up to fourth order of accuracy with very weak assumptions on the regularity of the grid. Our results show the expected convergence rates, the correct propagation of shocks across grid discontinuities and demonstrate the improved resolution achieved with a locally refined non-uniform grid. The schemes proposed in this work naturally can also be applied to systems of conservation laws. They may also be extended to higher space dimensions by means of dimensional splitting. The error indicator based on the numerical entropy production, previously introduced for the case of systems of conservation laws, is extended to balance laws. Its decay rate and its ability to identify discontinuities is illustrated on several tests. Keywords High order finite volumes Non-uniform grids Entropy Well balancing

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700