Tryptase is involved in the development of early ventilator-induced pulmonary fibrosis in sepsis-induced lung injury
详细信息    查看全文
  • 作者:Jes煤s Villar (1) (2) (3)
    Nuria E Cabrera-Ben铆tez (1) (2)
    Francisco Valladares (1) (4)
    Sonia Garc铆a-Hern谩ndez (4)
    脕ngela Ramos-Nuez (1) (2)
    Jos茅 Lu铆s Mart铆n-Barrasa (2)
    Mercedes Muros (1) (5)
    Robert M Kacmarek (6) (7)
    Arthur S Slutsky (3) (8)

    1. CIBER de Enfermedades Respiratorias
    ; Instituto de Salud Carlos III ; Monforte de Lemos 3-5 ; 28029 ; Madrid ; Spain
    2. Multidisciplinary Organ Dysfunction Evaluation Research Network
    ; Research Unit ; Hospital Universitario Dr. Negrin ; Barranco de la Ballena ; s/n ; Las Palmas de Gran Canaria ; 35010 ; Spain
    3. Keenan Research Center for Biomedical Science
    ; St. Michael鈥檚 Hospital ; 30 Bond Street ; Toronto ; ON ; M5B 1W8 ; Canada
    4. Department of Anatomy
    ; Pathology and Histology ; University of La Laguna ; Campus de CC. de la Salud ; 38071 ; Tenerife ; Spain
    5. Department of Clinical Biochemistry
    ; Hospital Universitario NS de Candelaria ; Ctra. Gral. del Rosario ; 145 ; Santa Cruz de Tenerife ; 38010 ; Spain
    6. Department of Respiratory Care
    ; Massachusetts General Hospital ; 55 Fruit Street ; Boston ; MA ; 02114 ; USA
    7. Department of Anesthesia
    ; Harvard University ; 75 Francis Street ; Boston ; MA ; 02115 ; USA
    8. Interdepartmental Division of Critical Care Medicine
    ; University of Toronto ; 585 University Avenue ; Toronto ; ON ; M5G 2N2 ; Canada
  • 刊名:Critical Care
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:19
  • 期:1
  • 全文大小:3,431 KB
  • 参考文献:1. Villar, J, Sulemanji, D, Kacmarek, RM (2014) The acute respiratory distress syndrome: incidence and mortality, has it changed?. Curr Opin Crit Care 20: pp. 3-9 ns in new window">CrossRef
    2. Villar, J, Blanco, J, Zhang, H, Slutsky, AS (2011) Ventilator-induced lung injury and sepsis: two sides of the same coin?. Minerva Anestesiol 77: pp. 647-653
    Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342: pp. 1301-1308 ns in new window">CrossRef
    3. Slutsky, AS, Ranieri, VM (2013) Ventilator-induced lung injury. N Engl J Med 369: pp. 2126-2136 ns in new window">CrossRef
    4. Copland, IB, Kavanagh, BP, Engelberts, D, McKerlie, C, Belik, J, Post, M (2003) Early changes in lung gene expression due to high tidal volume. Am J Respir Crit Care Med 168: pp. 1051-1059 ns in new window">CrossRef
    5. Villar, J, Cabrera, N, Casula, M, Flores, C, Valladares, F, Muros, M (2010) Mechanical ventilation modulates Toll-like receptor signaling pathway in a sepsis-induced lung injury model. Intensive Care Med 36: pp. 1049-1057 ns in new window">CrossRef
    6. Rouby, JJ, Lherm, T, Martin de Lassale, E, Poete, P, Bodin, L, Finet, JF (1993) Histologic aspects of pulmonary barotrauma in critically ill patients with acute respiratory failure. Intensive Care Med 19: pp. 383-389 ns in new window">CrossRef
    7. Thille, AW, Esteban, A, Fernandez-Segoviano, P, Rodriguez, JM, Aramburu, JA, Vargas-Errazuriz, P (2013) Chronology of histological lesions in acute respiratory distress syndrome with diffuse alveolar damage: a prospective cohort study of clinical autopsies. Lancet Respir Med 1: pp. 395-401 ns in new window">CrossRef
    8. Keshari, RS, Silasi-Mansat, R, Zhu, H, Popescu, NI, Peer, G, Chaaban, H (2014) Acute lung injury and fibrosis in a baboon model of Escherichia coli sepsis. Am J Respir Cell Mol Biol 50: pp. 439-450
    9. Villar, J, Cabrera, NE, Valladares, F, Casula, M, Flores, C, Blanch, L (2011) Activation of the Wnt/beta-catenin signaling pathway by mechanical ventilation is associated with ventilator-induced pulmonary fibrosis in healthy lungs. PLoS One 6: pp. e23914 ns in new window">CrossRef
    10. Cabrera-Benitez, NE, Laffey, JG, Parotto, M, Spieth, PM, Villar, J, Zhang, H (2014) Mechanical ventilation-associated lung fibrosis in acute respiratory distress syndrome. Anesthesiology 121: pp. 189-198 ns in new window">CrossRef
    11. Martin, C, Papazian, L, Payan, MJ, Saux, P, Gouin, F (1995) Pulmonary fibrosis correlates with outcome in adult respiratory distress syndrome. A study in mechanically ventilated patients. Chest 107: pp. 196-200 ns in new window">CrossRef
    12. Villar, J, Cabrera, NE, Casula, M, Valladares, F, Flores, C, Lopez-Aguilar, J (2011) WNT/尾-catenin signaling is modulated by mechanical ventilation in an experimental model of acute lung injury. Intensive Care Med 37: pp. 1201-1209 ns in new window">CrossRef
    13. Cabrera-Benitez, NE, Parotto, M, Post, M, Han, B, Spieth, PM, Cheng, WE (2012) Mechanical stress induces lung fibrosis by epithelial-mesenchymal transition. Crit Care Med 40: pp. 510-517 ns in new window">CrossRef
    14. Ichikado, K, Muranaka, H, Gushima, Y, Kotani, T, Nader, HM, Fujimoto, K (2012) Fibroproliferative changes on high-resolution CT in the acute respiratory distress syndrome predict mortality and ventilator dependency: a prospective observational cohort study. BMJ Open 2: pp. e000545 ns in new window">CrossRef
    15. Cairns, JA, Walls, AF (1997) Mast cell tryptase stimulates the synthesis of type I collagen in human lung fibroblasts. J Clin Invest 99: pp. 1313-1321 ns in new window">CrossRef
    16. Liebler, JM, Qu, Z, Buckner, B, Powers, MR, Rosenbaum, JT (1998) Fibroproliferation and mast cells in the acute respiratory distress syndrome. Thorax 53: pp. 823-829 ns in new window">CrossRef
    17. Pereira, PJ, Bergner, A, Macedo-Ribeiro, S, Huber, R, Matschiner, G, Fritz, H (1998) Human beta-tryptase is a ring-like tetramer with active sites facing a central pore. Nature 392: pp. 306-311 ns in new window">CrossRef
    18. Mullan, CS, Riley, M, Clarke, D, Tatler, A, Sutcliffe, A, Knox, AJ (2008) Beta-tryptase regulates IL-8 expression in airway smooth muscle cells by a PAR-2-independent mechanism. Am J Respir Cell Mol Biol 38: pp. 600-608 ns in new window">CrossRef
    19. Yang, XP, Li, Y, Wang, Y, Wang, P (2010) 尾-Tryptase up-regulates vascular endothelial growth factor expression via proteinase-activated receptor-2 and mitogen-activated protein kinase pathways in bone marrow stromal cells in acute myeloid leukemia. Leuk Lymphoma 51: pp. 1550-1558 ns in new window">CrossRef
    20. Gruber, BL, Kew, RR, Jelaska, A, Marchese, MJ, Garlick, J, Ren, S (1997) Human mast cells activate fibroblasts: tryptase is a fibrogenic factor stimulating collagen messenger ribonucleic acid synthesis and fibroblast chemotaxis. J Immunol 158: pp. 2310-2317
    21. Akers, IA, Parsons, M, Hill, MR, Hollenberg, MD, Sanjar, S, Laurent, GJ (2000) Mast cell tryptase stimulates human lung fibroblast proliferation via protease-activated receptor-2. Am J Physiol Lung Cell Mol Physiol 278: pp. L193-L201
    22. Kilkenny, C, Browne, WJ, Cuthill, IC, Emerson, M, Altman, DG (2010) Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biology 8: pp. e1000412 ns in new window">CrossRef
    23. Villar, J, Muros, M, Cabrera-Ben铆tez, NE, Valladares, F, Lopez-Hernandez, M, Flores, C (2014) Soluble platelet-endothelial cell adhesion molecule-1, a biomarker of ventilator-induced lung injury. Crit Care 18: pp. R41 ns in new window">CrossRef
    24. Rittirsch, D, Huber-Lang, MS, Flierl, MA, Ward, PA (2009) Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc 4: pp. 31-36 ns in new window">CrossRef
    25. Herrera, MT, Toledo, C, Valladares, F, Muros, M, Diaz-Flores, L, Flores, C (2003) Positive end-expiratory pressure modulates local and systemic inflammatory responses in a sepsis-induced lung injury model. Intensive Care Med 29: pp. 1345-1353 ns in new window">CrossRef
    26. Parker, JC, Hernandez, LA, Peevy, KJ (1993) Mechanisms of ventilator-induced lung injury. Crit Care Med 21: pp. 131-143 ns in new window">CrossRef
    27. Ashcroft, T, Simpson, JM, Timbrell, V (1988) Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J Clin Pathol 41: pp. 467-470 ns in new window">CrossRef
    28. Woessner, JF (1961) The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem BioPhys 93: pp. 440-447 ns in new window">CrossRef
    29. Hussein, O, Walters, B, Stroetz, R, Valencia, P, McCall, D, Hubmayr, RD (2013) Biophysical determinants of alveolar epithelial plasma membrane wounding associated with mechanical ventilation. Am J Physiol Lung Cell Mol Physiol 305: pp. L478-L484 ns in new window">CrossRef
    30. Gattinoni, L, Pesenti, A (2005) The concept of 鈥渂aby lung鈥? Intensive Care Med 31: pp. 776-784 ns in new window">CrossRef
    31. Pelosi, P, Rocco, PR (2008) Effects of mechanical ventilation on the extracellular matrix. Intensive Care Med 34: pp. 631-639 ns in new window">CrossRef
    32. Suki, B, Ito, S, Stamenovic, D, Lutchen, KR, Ingenito, EP (2005) Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces. J Appl Physiol (1985) 98: pp. 1892-1899 ns in new window">CrossRef
    33. Marshall, RP, Bellingan, G, Webb, S, Puddicombe, A, Goldsack, N, McAnulty, RJ (2000) Fibroproliferation occurs early in the acute respiratory distress syndrome and impacts on outcome. Am J Respir Crit Care Med 162: pp. 1783-1788 ns in new window">CrossRef
    34. Konigshoff, M, Balsara, N, Pfaff, EM, Kramer, M, Chrobak, I, Seeger, W (2008) Functional Wnt signaling is increased in idiopathic pulmonary fibrosis. PLoS One 3: pp. e2142 ns in new window">CrossRef
    35. Villar, J, Cabrera-Ben铆tez, NE, Ramos-Nuez, A, Flores, C, Garc铆a-Hern谩ndez, S, Valladares, F (2014) Early activation of pro-fibrotic WNT5A in sepsis-induced acute lung injury. Crit Care 18: pp. 568 ns in new window">CrossRef
    36. Payne, V, Kam, PC (2004) Mast cell tryptase: a review of its physiology and clinical significance. Anaesthesia 59: pp. 695-703 ns in new window">CrossRef
    37. D茅ry, O, Corvera, CU, Steinhoff, M, Bunnett, NW (1998) Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am J Physiol 274: pp. C1429-C1452
    38. Lan, RS, Stewart, GA, Henry, PJ (2002) Role of protease-activated receptors in airway function: a target for therapeutic intervention?. Pharmacol Ther 95: pp. 239-257 ns in new window">CrossRef
    39. Hunt, LW, Colby, TV, Weiler, DA, Sur, S, Butterfield, JH (1992) Immunofluorescent staining for mast cells in idiopathic pulmonary fibrosis: quantification and evidence for extracellular release of mast cell tryptase. Mayo Clin Proc 67: pp. 941-948 ns in new window">CrossRef
    40. Kanke, T, Kabeya, M, Kubo, S, Kondo, S, Yasuoka, K, Tagashira, J (2009) Novel antagonists for proteinase-activated receptor 2: inhibition of cellular and vascular responses in vitro and in vivo. Br J Pharmacol 158: pp. 361-371 ns in new window">CrossRef
    41. Rastogi, P, McHowat, J (2009) Inhibition of calcium-independent phospholipase A2 prevents inflammatory mediator production in pulmonary microvascular endothelium. Respir Physiol Neurobiol 165: pp. 167-174 ns in new window">CrossRef
    42. Gan, X, Liu, D, Huang, P, Gao, W, Chen, X, Hei, Z (2012) Mast-cell-releasing tryptase triggers acute lung injury induced by small intestinal ischemia-reperfusion by activating PAR-2 in rats. Inflammation 35: pp. 1144-1153 ns in new window">CrossRef
    43. Suzuki, N, Horiuchi, T, Ohta, K, Yamaguchi, M, Ueda, T, Takizawa, H (1993) Mast cells are essential for the full development of silica-induced pulmonary inflammation: a study with mast cell-deficient mice. Am J Respir Cell Mol Biol 9: pp. 475-483 ns in new window">CrossRef
    44. Knight, V, Tchongue, J, Lourensz, D, Tipping, P, Sievert, W (2012) Protease-activated receptor 2 promotes experimental liver fibrosis in mice and activates human hepatic stellate cells. Hepatology 55: pp. 879-887 ns in new window">CrossRef
    45. Feistritzer, C, Lenta, R, Riewald, M (2005) Protease-activated receptors-1 and -2 can mediate endothelial barrier protection: role in factor Xa signaling. J Thromb Haemost 3: pp. 2798-2805 ns in new window">CrossRef
  • 刊物主题:Intensive / Critical Care Medicine; Emergency Medicine;
  • 出版者:BioMed Central
  • ISSN:1364-8535
文摘
Introduction Most patients with sepsis and acute lung injury require mechanical ventilation to improve oxygenation and facilitate organ repair. Mast cells are important in response to infection and resolution of tissue injury. Since tryptase secreted from mast cells has been associated with tissue fibrosis, we hypothesized that tryptase would be involved in the early development of ventilator-induced pulmonary fibrosis in a clinically relevant model of sepsis-induced lung injury. Methods Prospective, randomized, controlled animal study using Sprague-Dawley rats. Sepsis was induced by cecal ligation and perforation. Animals were randomized to spontaneous breathing or two ventilatory strategies for 4 h: protective ventilation with tidal volume (VT) = 6 ml/kg plus 10 cmH2O positive end-expiratory pressure (PEEP) or injurious ventilation with VT = 20 ml/kg plus 2 cmH2O PEEP. Healthy, non-ventilated animals served as non-septic controls. We studied the following end points: histology, serum cytokine levels, hydroxyproline content, tryptase and proteinase-activated receptor-2 (PAR-2) protein level in lung homogenates, and tryptase and PAR-2 immunohistochemical localization in the lungs. Results All septic animals developed acute lung injury. Animals ventilated with high VT had a significant increase of pulmonary fibrosis, hydroxyproline content, tryptase and PAR-2 protein levels compared to septic controls (P Conclusions Mechanical ventilation modified tryptase and PAR-2 in injured lungs. Increased levels of these proteins were associated with development of sepsis and ventilator-induced pulmonary fibrosis early in the course of sepsis-induced lung injury.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700