Inbreeding Affects Locomotor Activity in Drosophila melanogaster at Different Ages
详细信息    查看全文
  • 作者:Tommaso Manenti (1)
    Cino Pertoldi (1) (2) (3)
    Neda Nasiri (1)
    Mads Fristrup Schou (1)
    Anders Kj忙rsgaard (1) (4)
    Sandro Cavicchi (1)
    Volker Loeschcke (1)

    1. Department of Bioscience
    ; Genetics ; Ecology and Evolution ; Aarhus University ; Ny Munkegade 114-116 ; Buildg. 1540 ; 8000 ; Aarhus C ; Denmark
    2. Department of Biotechnology
    ; Chemistry and Environmental Engineering - Section of Biology and Environmental Science ; Aalborg University ; Sohng氓rdsholmsvej 57 ; 9000 ; Aalborg ; Denmark
    3. Aalborg Zoo
    ; Aalborg ; Denmark
    4. Institute of Evolutionary Biology and Environmental Studies
    ; University of Zurich ; Winterthurerstrasse 190 ; 8057 ; Zurich ; Switzerland
  • 关键词:Inbreeding depression ; Circadian rhythm ; Daily activity ; Light ; dark regime ; Ageing
  • 刊名:Behavior Genetics
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:45
  • 期:1
  • 页码:127-134
  • 全文大小:1,037 KB
  • 参考文献:1. Allada R (2003) Circadian clocks: a tale of two feedback loops. Cell 112:284鈥?86 CrossRef
    2. Allada R, Chung BY (2010) Circadian organization of behavior and physiology in / Drosophila. Annu Rev Physiol 72:605鈥?24 CrossRef
    3. Armbruster P, Reed DH (2005) Inbreeding depression in benign and stressful environments. Heredity 95:235鈥?42 CrossRef
    4. Auld JR, Relyea RA (2010) Inbreeding depression in adaptive plasticity under predation risk in a freshwater snail. Biol Letters 6:222鈥?24 CrossRef
    5. Bahrndorff S, Kjaersgaard A, Pertoldi C, Loeschcke V, Schou TM, Skovgard H, Hald B (2012) The effects of sex-ratio and density on locomotor activity in the house fly. Musca domestica, J Insect Sci 12
    6. Bijlsma R, Bundgaard J, Boerema AC (2000) Does inbreeding affect the extinction risk of small populations? predictions from / Drosophila. J Evolution Biol 13:502鈥?14 CrossRef
    7. Blau J (2003) A new role for an old kinase: CK2 and the circadian clock. Nat Neurosci 6:208鈥?10 CrossRef
    8. Catterson JH, Knowles-Barley S, James K, Heck MMS, Harmar AJ, Hartley PS (2010) Dietary modulation of Drosophila sleep-wake behaviour. PloS One 5:e12062
    9. Charlesworth D, Willis JH (2009) Fundamental concepts in genetics the genetics of inbreeding depression. Nat Rev Genet 10:783鈥?96 CrossRef
    10. Chen Q, He Y, Yang K (2005) Gene therapy for Parkinson鈥檚 disease: progress and challenges. Curr Gene Ther 5:71鈥?0 CrossRef
    11. Crnokrak P, Roff DA (1999) Inbreeding depression in the wild. Heredity 83:260鈥?70 CrossRef
    12. Crow JF, Kimura M (1972) An introduction to population genetic theory, 5th edn. Burgess Publishing Company, University of California, Berkeley
    13. Dingemanse NJ, Reale D (2005) Natural selection and animal personality. Behaviour 142:1159鈥?184 CrossRef
    14. Douglas B, Maechler M, Bolker B (2013) lme4: Linear mixed-effects models using S4 classes, 2012. R package version 0.999999-0
    15. Ewer J, Frisch B, Hamblen-Coyle MJ, Rosbash M, Hall JC (1992) Expression of the period clock gene within different cell types in the brain of / Drosophila adults and mosaic analysis of these cells鈥?influence on circadian behavioral rhythms. J Neurosci 12:3321鈥?349
    16. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Prentice Hall, England
    17. Fernandez JR, Grant MD, Tulli NM, Karkowski LM, McClearn GE (1999) Differences in locomotor activity across the lifespan of / Drosophila melanogaster. Exp Gerontol 34:621鈥?31 CrossRef
    18. Fox CW, Reed DH (2011) Inbreeding depression increases with environmental stress: an experimental study and meta-analysis. Evolution 65:246鈥?58 CrossRef
    19. Frankham R (1995) Conservation genetics. Annu Rev Genet 29:305鈥?27 CrossRef
    20. Fukagawa NK, Bandini LG, Young JB (1990) Effect of age on body-composition and resting metabolic-rate. Am J Physiol 259:E233鈥揈238
    21. Gui R (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
    22. Helfrich-Forster C (2000) Differential control of morning and evening components in the activity rhythm of / Drosophila melanogaster sex-specific differences suggest a different quality of activity. J Biol Rhythms 15:135鈥?54 CrossRef
    23. Hill WG, Mackay TF (2004) D. S. Falconer and Introduction to quantitative genetics. Genetics 167:1529鈥?536
    24. Hirth F, Reichert H (1999) Conserved genetic programs in insect and mammalian brain development. BioEssays 21:677鈥?84 CrossRef
    25. Jordan KW, Morgan TJ, Mackay TFC (2006) Quantitative trait loci for locomotor behavior in / Drosophila melanogaster. Genetics 174:271鈥?84 CrossRef
    26. Jordan KW, Carbone MA, Yamamoto A, Morgan TJ, Mackay TF (2007) Quantitative genomics of locomotor behavior in / Drosophila melanogaster. Genome Biol 8:R172 CrossRef
    27. Kjaersgaard A, Demontis D, Kristensen TN, Le N, Faurby S, Pertoldi C, Sorensen JG, Loeschcke V (2010) Locomotor activity of / Drosophila melanogaster in high temperature environments: plastic and evolutionary responses. Clim Res 43:127鈥?34 CrossRef
    28. Konopka RJ, Benzer S (1971) Clock mutants of / Drosophila melanogaster. Proc Natl Acad Sci USA 68:2112鈥?116 CrossRef
    29. Kristensen TN, Barker JSF, Pedersen KS, Loeschcke V (2008a) Extreme temperatures increase the deleterious consequences of inbreeding under laboratory and semi-natural conditions. P Roy Soc B-Biol Sci 275:2055鈥?061 CrossRef
    30. Kristensen TN, Loeschcke V, Hoffmann AA (2008b) Linking inbreeding effects in captive populations with fitness in the wild: release of replicated / Drosophila melanogaster lines under different temperatures. Conserv Biol 22:189鈥?99 CrossRef
    31. Lebourg E (1987) The rate of living theory. Spontaneous Locomotor-Activity, aging and longevity in / Drosophila melanogaster. Exp Gerontol 22:359鈥?69 CrossRef
    32. Lebourg E, Lints FA (1984) A songitudinal study of the effects of age on spontaneous locomotor-activity in / Drosophila melanogaster. Gerontology 30:79鈥?6 CrossRef
    33. Loeschcke V, Hoffmann AA (2007) Consequences of heat hardening on a field fitness component in / Drosophila depend on environmental temperature. Am Nat 169:175鈥?83 CrossRef
    34. Long TAF, Rice WR (2007) Adult locomotory activity mediates intralocus sexual conflict in a laboratory-adapted population of / Drosophila melanogaster. P Roy Soc B-Biol Sci 274:3105鈥?112 CrossRef
    35. Lu B, Liu W, Guo F, Guo A (2008) Circadian modulation of light-induced locomotion responses in / Drosophila melanogaster. Genes Brain Behav 7:730鈥?39 CrossRef
    36. Martin JR, Raabe T, Heisenberg M (1999) Central complex substructures are required for the maintenance of locomotor activity in / Drosophila melanogaster. J Comp Physiol A 185:277鈥?88 CrossRef
    37. Nash HA, Scott RL, Lear BC, Allada R (2002) An unusual cation channel mediates photic control of locomotion in / Drosophila. Curr Biol 12:2152鈥?158 CrossRef
    38. Nicolas G, Sillans D (1989) Immediate and latent effects of carbon-dioxide on insects. Annu Rev Entomol 34:97鈥?16 CrossRef
    39. Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson鈥檚 disease. Annu Rev Neurosci 22:123鈥?44 CrossRef
    40. Overgaard J, S酶rensen JG, Jensen LT, Loeschcke V, Kristensen TN (2010) Field tests reveal genetic variation for performance at low temperatures in / Drosophila melanogaster. Funct Ecol 24:186鈥?95 CrossRef
    41. Panda S, Hogenesch JB, Kay SA (2002) Circadian rhythms from flies to human. Nature 417:329鈥?35 CrossRef
    42. Partridge L, Ewing A, Chandler A (1987) Male size and mating success in / Drosophila melanogaster - the roles of male and female behavior. Anim Behav 35:555鈥?62 CrossRef
    43. Pittendrigh CS (1954) On temperature independence in the clock system controlling emergence time in / Drosophila. Proc Natl Acad Sci USA 40:1018鈥?029 CrossRef
    44. Reed DH, Fox CW, Enders LS, Kristensen TN (2012) Inbreeding-stress interactions: evolutionary and conservation consequences. Ann Ny Acad Sci 1256:33鈥?8 CrossRef
    45. Roff DA (1998) Effects of inbreeding on morphological and life history traits of the sand cricket, / Gryllus firmus. Heredity 81:28鈥?7 CrossRef
    46. Schou MF, Kristensen TN, Kellermann V, Schl枚tterer C, Loeschcke V (2014) A / Drosophila laboratory evolution experiment points to low evolutionary potential under increased temperatures likely to be experienced in the future. J Evol Biol 27(9):1859鈥?868 CrossRef
    47. Sharp PM (1984) The effect of inbreeding on competitive male-mating ability in / Drosophila melanogaster. Genetics 106:601鈥?12
    48. Stoleru D, Peng Y, Agosto J, Rosbash M (2004) Coupled oscillators control morning and evening locomotor behaviour of / Drosophila. Nature 431:862鈥?68 CrossRef
    49. Suh J, Jackson FR (2007) / Drosophila Ebony activity is required in glia for the circadian regulation of locomotor activity. Neuron 55:435鈥?47 CrossRef
    50. Tunnicliff G, Rick JT, Connolly K (1969) Locomotor Activity in Drosophila.V. A comparative biochemical study of selectively bred populations. Comp Biochem Physiol 29:1239鈥?248 CrossRef
    51. Wheeler DA, Hamblen-Coyle MJ, Dushay MS, Hall JC (1993) Behavior in light-dark cycles of / Drosophila mutants that are arrhythmic, blind, or both. J Biol Rhythms 8:67鈥?4 CrossRef
    52. Whitlock MC, Fowler K (1999) The changes in genetic and environmental variance with inbreeding in / Drosophila melanogaster. Genetics 152:345鈥?53
    53. Wisco JJ, Matles H, Berrigan D (1997) Is the scaling of locomotor performance with body size constant? Ecol Entomol 22:483鈥?86 CrossRef
    54. Young MW, Kay SA (2001) Time zones: a comparative genetics of circadian clocks. Nat Rev Genet 2:702鈥?15 CrossRef
    55. Zerr DM, Hall JC, Rosbash M, Siwicki KK (1990) Circadian fluctuations of period protein immunoreactivity in the CNS and the visual system of / Drosophila. J Neurosci 10:2749鈥?762
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Human Genetics
    Neurosciences
    Evolutionary Biology
  • 出版者:Springer Netherlands
  • ISSN:1573-3297
文摘
The ability to move is essential for many behavioural traits closely related to fitness. Here we studied the effect of inbreeding on locomotor activity (LA) of Drosophila melanogaster at different ages under both dark and light regimes. We expected to find a decreased LA in inbred lines compared to control lines. We also predicted an increased differentiation between lines due to inbreeding. LA was higher in the dark compared to the light regime for both inbred and outbred control lines. As expected, inbreeding increased phenotypic variance in LA, with some inbred lines showing higher and some lower LA than control lines. Moreover, age per se did not affect LA neither in control nor in inbred lines, while we found a strong line by age interaction between inbred lines. Interestingly, inbreeding changed the daily activity pattern of the flies: these patterns were consistent across all control lines but were lost in some inbred lines. The departure in the daily pattern of LA in inbred lines may contribute to the inbreeding depression observed in inbred natural populations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700