TC 238-SCM: hydration and microstructure of concrete with SCMs
详细信息    查看全文
  • 作者:Karen L. Scrivener (1)
    Barbara Lothenbach (2)
    Nele De Belie (3)
    Elke Gruyaert (3)
    J酶rgen Skibsted (4)
    Ruben Snellings (5)
    Anya Vollpracht (6)

    1. Laboratory for Construction Materials
    ; Station 12 ; 1015 ; Lausanne ; Switzerland
    2. Laboratory for Construction Chemistry
    ; EMPA ; 8600 ; Dubendorf ; Switzerland
    3. Magnal Laboratoy for Concrte Research
    ; Ghent University ; 9052 ; Ghent ; Belgium
    4. Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO)
    ; Aarhus University ; 8000 ; Aarhus C ; Denmark
    5. Sustainable Materials Management Unit
    ; VITO ; 2400 ; Mol ; Belgium
    6. Institute of Building Materials Research
    ; RWTH Aachen University ; 52062 ; Aachen ; Germany
  • 关键词:SCM ; Hydration ; Blended cement ; Degree of reaction
  • 刊名:Materials and Structures
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:48
  • 期:4
  • 页码:835-862
  • 全文大小:2,652 KB
  • 参考文献:1. Antoni, M, Rossen, J, Martirena, F, Scrivener, K (2012) Cement substitution by a combination of metakaolin and limestone. Cem Concr Res 42: pp. 1579-1589 CrossRef
    2. Antiohos, SK, Papadakis, VG, Chaniotakis, E, Tsimas, S (2007) Improving the performance of ternary blended cements by mixing different types of fly ashes. Cem Concr Res 37: pp. 877-885 CrossRef
    3. Aranda, M, Torre, 脕G, Le贸n-Reina, L (2012) Rietveld quantitative phase analysis of OPC clinkers, cements and hydration products. Rev Mineral Geochem 74: pp. 169-209 CrossRef
    4. ASTM C1608 (2007) Standard test method for chemical shrinkage of hydraulic cement paste. ASTM International, West Conshohocken
    5. Baquerizo LG, Matschei T, Scrivener KL, Saedipour M, Wads枚 L (2015) Hydration states of AFm cement phases. Cem Concr Res (in press)
    6. Baert G (2009) Physico-chemical interactions in Portland cement鈥?high volume) fly ash binders. Ph.D. study, Ghent University (ISBN: 978-90-8578-298-8)
    7. Ben Haha, M, Weerdt, K, Lothenbach, B (2010) Quantification of the degree of reaction of fly ash. Cem Concr Res 40: pp. 1620-1629 CrossRef
    8. Bergold, ST, Goetz-Neunhoeffer, F, Neubauer, J (2013) Quantitative analysis of C鈥揝鈥揌 in hydrating alite pastes by in situ XRD. Cem Concr Res 53: pp. 119-126 CrossRef
    9. Berodier, E, Scrivener, KL (2014) Understanding the filler effect on the nucleation and growth of C鈥揝鈥揌. J Am Ceram Soc 97: pp. 3764-3773 CrossRef
    10. Berodier E, Scrivener KL (2014b) Evolution of pore structure in blended systems. Cem Concr Res (submitted)
    11. Brough, AR, Atkinson, A (2000) Automated identification of the aggregate鈥損aste interfacial transition zone in mortars of silica sand with Portland or alkali-activated slag cement paste. Cem Concr Res 30: pp. 849-854 CrossRef
    12. Brough, AR, Atkinson, A (2002) Sodium silicate-based, alkali-activated slag mortars: part I. Strength, hydration and microstructure. Cem Concr Res 32: pp. 865-879 CrossRef
    13. Cassagnab猫re, F, Mouret, M, Escadeillas, G (2009) Early hydration of clinker鈥搒lag鈥搈etakaolin combination in steam curing conditions, relation with mechanical properties. Cem Concr Res 39: pp. 1164-1173 CrossRef
    14. Chen W (2006) Hydration of slag cement鈥攖heory, modeling and application. Ph.D. study, University of Twente
    15. Cheng-yi, H, Feldman, RF (1985) Hydration reactions in Portland cement-silica fume blends. Cem Concr Res 15: pp. 585-592 CrossRef
    16. Copeland LE, Kantro DL (1960) Chemistry of hydration of Portland cement. Proceedings of 4th international Symposium Chemistry of Cement. Cement and Concrete Association, Washington
    17. Costoya (2008) Effect of particle size on the hydration kinetics and microstructural development of tricalcium silicate. Th猫se EPFL, no. 4102
    18. Cyr, M, Lawrence, P, Ringot, E (2005) Mineral admixtures in mortars: quantification of the physical effects of inert materials on short-term hydration. Cem Concr Res 35: pp. 719-730
    19. Deschner, F, Winnefeld, F, Lothenbach, B, Seufert, S, Schwesig, P, Dittrich, S, Goetz-Neunhoeffer, F, Neubauer, J (2012) Hydration of a Portland cement with high replacement by siliceous fly ash. Cem Concr Res 42: pp. 1389-1400 CrossRef
    20. Deschner, F, M眉nch, B, Winnefeld, F, Lothenbach, B (2013) Quantification of fly ash in hydrated, blended Portland cement pastes by back-scattered electron imaging. J Microsc 251: pp. 188-204 CrossRef
    21. DIN (German Institute for Standardisation) Technical Report CEN/TR 196-4: Pr眉fverfahren f眉r Zement鈥擳eil 4: quantitative Bestimmung der Bestandteile (Test methods for cement鈥攑art 4: quantitative determination of constituents). November 2007
    22. Dobson, CM, Goberdhan, DGC, Ramsay, JDF, Rodger, SA (1988) 29Si MAS NMR study of the hydration of tricalcium silicate in the presence of finely divided silica. J Mater Sci 23: pp. 4108-4114 CrossRef
    23. Durdzi艅ski P, Dunant CF, Ben Haha M, Scrivener KL (2015) Identification of different glasses in calcareous fly ash and quantification of their degree of reaction in Portland-fly ash composite cements. Cem Concr Res (submitted)
    24. Dyson, HM, Richardson, IG, Brough, AR (2007) A combined 29Si MAS NMR and selective dissolution technique for the quantitative evaluation of hydrated blast furnace slag cement blends. J Am Ceram Soc 90: pp. 598-602 CrossRef
    25. European, S (1986) Methods of testing cements: quantitative determination of constituents. European Committee for Standardization, Brussels
    26. Escalante-Garcia, JI (2003) Nonevaporable water from neat OPC and replacement materials in composite cements hydrated at different temperatures. Cem Concr Res 33: pp. 1883-1888 CrossRef
    27. Fern谩ndez-Jim茅nez, A, Torre, AG, Palomo, A, L贸pez-Olmo, G, Alonso, MM, Aranda, MAG (2006) Quantitative determination of phases in the alkaline activation of fly-ash. Part II: degree of reaction. Fuel 85: pp. 1960-1969 CrossRef
    28. Gallucci, E, Zhang, X, Scrivener, K (2013) Effect of Temperature on the microstructure of calcium silicate hydrate (C鈥揝鈥揌). Cem Concr Res 53: pp. 185-195 CrossRef
    29. Geiker M (1983) Studies of Portland cement hydration: measurements of chemical shrinkage and a systematic evaluation of hydration curves by means of the dispersion model. Ph.D. study, Technical University of Denmark, Copenhagen
    30. Goguel, R (1995) A new consecutive dissolution method for the analysis of slag cements. Cem Concr Aggreg J 17: pp. 84-91 CrossRef
    31. Gr眉n R, Kunze G (1925a) Messung der latenten Energie von Hochofensschlacken und von Einzelkomponenten des Dreistoffsystems Kieselsa眉re-Kalk-Tonerde-2. Zement
    32. Gr眉n R, Kunze G (1925b) Messung der latenten Energie von Hochofensschlacken und von Einzelkomponenten des Dreistoffsystems Kieselsa眉re-Kalk-Tonerde-1. Zement
    33. Gruskovnjak, A, Lothenbach, B, Winnefeld, F, M眉nch, B, Ko, SC, Adler, M, M盲der, U (2011) Quantification of hydration phases in super sulphated cements: review and new approaches. Adv Cem Res 23: pp. 265-275 CrossRef
    34. Gruyaert E (2011) Effect of blast-furnace slag as cement replacement on hydration, microstructure, strength and durability of concrete. Ph.D. study, Ghent University (ISBN: 978-90-8578-412-8)
    35. Gutteridge, WA, Dalziel, JA (1990) Filler cement: the effect of the secondary component on the hydration of Portland cement: part I. A fine non-hydraulic filler. Cem Concr Res 20: pp. 778-782 CrossRef
    36. Halse, Y, Goult, DJ, Pratt, PL (1984) Calorimetry and microscopy of flyash and silica fume cement blends. Br Ceram Proc Issue 35: pp. 403-417
    37. Hench, LL, Clark, DE (1978) Physical chemistry of glass surfaces. J Non-Cryst Solids 28: pp. 83-105 CrossRef
    38. Hjorth, J, Skibsted, J, Jakobsen, HJ (1988) 29Si MAS NMR studies of Portland cement components and effects of microsilica on the hydration reaction. Cem Concr Res 18: pp. 789-798 CrossRef
    39. Justnes, H, Meland, I, Bj酶rgum, JO, Krane, J (1990) A 29Si MAS NMR study of the pozzolanic activity of condensed silica fume and the hydration of di- and tricalcium silicate. Adv Cem Res 3: pp. 111-116 CrossRef
    40. Kishi T, Maekawa K (1994) Thermal and mechanical modelling of young concrete based on hydration process of multi-component cement minerals. Proceedings of the international RILEM symposium on thermal cracking in concrete at early ages, Munich, E&FN Spon, London
    41. Kishi T (2009) Personal communication
    42. Klimesch, DS, Ray, A (1996) The use of DTA/TGA to study the effects of ground quartz with different surface areas in autoclaved cement: quartz pastes. Part 1: a method for evaluating DTA/TGA results. Thermochim Acta 289: pp. 41-54 CrossRef
    43. Kocaba V (2009) Development and evaluation of methods to follow microstructural development of cementitious systems including slags. Th猫se EPFL, no. 4523 (2009) http://infoscience.epfl.ch/record/140998/files/EPFL_TH4523.pdf
    44. Kocaba, V, Gallucci, E, Scrivener, KL (2012) Methods for determination of degree of reaction of slag in blended cement pastes. Cem Concr Res 42: pp. 511-525 CrossRef
    45. Kourounis, S, Tsivilis, S, Tsakiridis, PE, Papadimitriou, GD, Tsibouki, Z (2007) Properties and hydration of blended cements with steelmaking slag. Cem Concr Res 37: pp. 815-822 CrossRef
    46. Le贸n-Reina, L (2009) Round robin on Rietveld quantitative phase analysis of Portland cements. J Appl Crystallogr 42: pp. 906-916 CrossRef
    47. Saout, G, Kocaba, V, Scrivener, K (2011) Application of the Rietveld method to the analysis of anhydrous cement. Cem Concr Res 41: pp. 133-148 CrossRef
    48. Saout, G, Ben Haha, M, Winnefeld, F, Lothenbach, B (2012) Hydration degree of alkali activated slags. J Am Ceram Soc 94: pp. 4541-4547 CrossRef
    49. Li, S, Roy, DM, Kumar, A (1985) Quantatative determination of pozzolanas in hydrated systems of cement or Ca(OH)2 with fly ash or silica fume. Cem Concr Res 15: pp. 1079-1086 CrossRef
    50. Lothenbach, B, Scrivener, K, Hooton, RD (2011) Supplementary cementitious materials. Cem Concr Res 41: pp. 217-229 CrossRef
    51. Luke, K, Glasser, FP (1987) Selective dissolution of hydrated blast furnace slag cements. Cem Concr Res 17: pp. 273-282 CrossRef
    52. Lumley, JS, Gollop, RS, Moir, GK, Taylor, HFW (1996) Degrees of reaction of the slag in some blends with Portland cement. Cem Concr Res 26: pp. 139-151 CrossRef
    53. Massazza, F (1998) Pozzolana and Pozzolanic cements, chapter 10 in Lea鈥檚 chemistry of cement and concrete. EdPC, Hewlett, Arnold
    54. Mounanga, P, Khelidj, A, Loukili, A, Baroghel-Bouny, V (2004) Predicting Ca(OH)2 content and chemical shrinkage of hydrating cement pastes using analytical approach. Cem Concr Res 34: pp. 225-265 CrossRef
    55. Myers N, Berodier E, Scrivener KL (2011) Nanocem internal study, unpublished
    56. Ohsawa, S, Asaga, K, Goto, S, Daimon, M (1985) Quantitative determination of fly ash in the hydrated fly ash鈥擟aSO4路2H2O鈥揅a(OH)2 system. Cem Concr Res 15: pp. 357-366 CrossRef
    57. Oelkers, EH, Golubev, SV, Chairat, C, Pokrovsky, OS, Schott, J (2009) The surface chemistry of multi-oxide silicates. Geochim Cosmochim Acta 73: pp. 4617-4634 CrossRef
    58. Pane, I, Hansen, W (2005) Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cem Concr Res 35: pp. 1155-1164 CrossRef
    59. Poulsen SL (2009) Methodologies for measuring the degree of reaction in Portland cement blends with supplementary cementititous materials by 29Si and 27Al MAS NMR spectroscopy, Ph.D. thesis, Aarhus University
    60. Poulsen, SL, Kocaba, V, Sao没t, G, Jakobsen, HJ, Scrivener, KL, Skibsted, J (2009) Improved quantification of alite and belite in anhydrous Portland cements by 29Si MAS NMR: Effects of paramagnetic ions. Solid State Nucl Magn Reson 36: pp. 32-44 CrossRef
    61. Poulsen SL, Jakobsen HJ Skibsted J (2009b) Methodologies for measuring the degree of reaction in Portland cement blends with supplementary cementitious materials by 27Al and 29Si MAS NMR spectroscopy. Proceedings of the 17th IBAUSIL鈥擨nternationale Baustofftagung, Weimar, Germany, vol I, pp 177鈥?88
    62. Rossen JE (2014) Composition and morphology of C鈥揂鈥揝鈥揌 in pastes of alite and cement blended with supplementary cementitious materials. Th猫se EPFL, no. 6294 (2014), http://infoscience.epfl.ch/record/200219/files/EPFL_TH6294.pdf
    63. Scarlett, NVY, Madsen, IC (2006) Quantification of phases with partial or no known crystal structures. Powder Diffr 21: pp. 278-284 CrossRef
    64. Scrivener, KL, Patel, HH, Pratt, PL, Parrott, LJ (1987) Analysis of phases in cement paste using backscattered electron images, methanol adsorption and thermogravimetric analysis in microstructural development during the hydration of cement. Proc Mater Res Soc Symp 85: pp. 67-76 CrossRef
    65. Scrivener, KL (2004) Backscattered electron imaging of cementitious microstructures: understanding and quantification. Cement Concr Compos 26: pp. 935-945 CrossRef
    66. Scrivener, KL, F眉llmann, T, Gallucci, E, Walenta, G, Bermejo, E (2004) Quantitative study of Portland cement hydration by X-ray diffraction/rietveld analysis and independent methods. Cem Concr Res 34: pp. 1541-1547 CrossRef
    67. Sevelsted, TF, Herfort, D, Skibsted, J (2013) 13C chemical shift anisotropies for carbonate ions in cement minerals and the use of 13C, 27Al and 29Si MAS NMR in studies of Portland cement including limestone additions. Cem Concr Res 52: pp. 100-111 CrossRef
    68. Skibsted, J, Andersen, MD, Jakobsen, HJ (2007) Applications of solid-state nuclear magnetic resonance (NMR) in studies of Portland cement-based materials. Zement Kalk Gips 60: pp. 70-83
    69. Skibsted J (2014) Unpublished results
    70. Snellings, R, Mertens, G, Cizer, 脰, Elsen, J (2010) Early age hydration and pozzolanic reaction in natural zeolite blended cements: reaction kinetics and products by in situ synchrotron X-ray powder diffraction. Cem Concr Res 40: pp. 1704-1713 CrossRef
    71. Snellings, R (2013) Solution-controlled dissolution of supplementary cementitious material glasses at pH 13: The effect of solution composition on glass dissolution rates. J Am Ceram Soc 96: pp. 2467-2475 CrossRef
    72. Snellings, R, Salze, A, Scrivener, KL (2014) Use of X-ray diffraction to quantify amorphous supplementary cementitious materials in anhydrous and hydrated blended cements. Cem Concr Res 64: pp. 89-98 CrossRef
    73. Suprenant, BA, Papadopoulos, G (1991) Selective dissolution of Portland鈥攆ly ash cements. J Mater Civ Eng 3: pp. 48-59 CrossRef
    74. Taylor HFW (1962) Hydrothermal reactions in the system CaO鈥揝iO2鈥揌2O and the steam curing of cement and cement-silica products. In: Proceedings of the 4th international symposium on the chemistry of cement, Washington D.C., 3: 167鈥?90.
    75. Taylor, HFW (1997) Cement chemistry. Thomas Telford, London CrossRef
    76. Tixier, R, Devaguptapu, R, Mobasher, B (1997) The effect of copper slag on the hydration and mechanical properties of cementitious mixtures. Cem Concr Res 27: pp. 1569-1580 CrossRef
    77. Vollpracht A, Nebel H, Brameshuber W (2010a) Investigation on the effectiveness of ground granulated blast furnace slag additive in concrete. Bagneux: RILEM. In: Brameshuber W (ed) Proceedings of the international RILEM conference on materials sc ience (MatSci), vol III: additions improving properties of concrete (AdIPoC), Aachen, Germany (ISBN 978-2-35158-110-0).
    78. Vollpracht A, Brameshuber W (2010b) Investigations on ten years old hardened cement paste samples. Bagneux: RILEM. In: Brameshuber W (ed) Proceedings of the international RILEM conference on materials science (MatSci), vol III: additions improving properties of concrete (AdIPoC), Aachen (ISBN 978-2-35158-110-0): 79鈥?1
    79. Wang, KS, Lin, KL, Lee, TY, Tzeng, BY (2004) The hydration characteristics when C2S is present in MSWI fly ash slag. Cement Concr Compos 26: pp. 323-330 CrossRef
    80. Williams, RP, Hart, RD, Riessen, A (2011) Quantification of the extent of reaction of metakaolin-based geopolymers using X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. J Am Ceram Soc 94: pp. 2663-2670 CrossRef
  • 刊物类别:Engineering
  • 刊物主题:Structural Mechanics
    Theoretical and Applied Mechanics
    Mechanical Engineering
    Operating Procedures and Materials Treatment
    Civil Engineering
    Building Materials
  • 出版者:Springer Netherlands
  • ISSN:1871-6873
文摘
This paper is the work of working group 2 of the RILEM TC 238-SCM. Its purpose is to review methods to estimate the degree of reaction of supplementary cementitious materials in blended (or composite) cement pastes. We do not consider explicitly the wider issues of the influence of SCMs on hydration kinetics, nor the measurement of degree of reaction in alkali activated materials. The paper categorises the techniques into direct methods and indirect methods. Direct methods attempt to measure directly the amount of SCM remaining at a certain time, such as selective dissolution, microscopy combined with image analysis, and NMR. Indirect methods infer the amount of SCM reacted by back calculation from some other measured quantity, such as calcium hydroxide consumption. The paper first discusses the different techniques, how they operate and the advantages and limitations along with more details of case studies on different SCMs. In the second part we summarise the most suitable approaches for each SCM, and the paper finishes with conclusions and perspectives for future work.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700